关于积分问题

它的积分怎么求?步骤详细一点,谢谢... 它的积分怎么求?步骤详细一点,谢谢 展开
飘渺的绿梦2
2012-11-08 · TA获得超过1.6万个赞
知道大有可为答主
回答量:4286
采纳率:84%
帮助的人:1712万
展开全部
∫√(x^2+a^2)dx
=x√(x^2+a^2)-∫xd[√(x^2+a^2)]
=x√(x^2+a^2)-∫{x/[2√(x^2+a^2)]}d(x^2+a^2)
=x√(x^2+a^2)-∫[x^2/√(x^2+a^2)]dx
=x√(x^2+a^2)-∫[(x^2+a^2-a^2)/√(x^2+a^2)]dx
=x√(x^2+a^2)-∫√(x^2+a^2)dx+a^2∫[1/√(x^2+a^2)]dx,
∴2∫√(x^2+a^2)dx=x√(x^2+a^2)+a^2∫[1/√(x^2+a^2)]dx。

令x=atanu,则:dx=[a/(cosu)^2]du。
∴2∫√(x^2+a^2)dx
=x√(x^2+a^2)+a^2∫{1/√[(atanu)^2+a^2]}[a/(cosu)^2]du
=x√(x^2+a^2)+a^2∫[1/(1/cosu)](1/cosu)^2du
=x√(x^2+a^2)+a^2∫[cosu/(cosu)^2]du
=x√(x^2+a^2)+a^2∫{1/[1-(sinu)^2]}d(sinu)
=x√(x^2+a^2)+(a^2/2)∫{(1-sinu+1+sinu)/[1-(sinu)^2]}d(sinu)
=x√(x^2+a^2)+(a^2/2){∫[1/(1+sinu)]d(sinu)+∫[1/(1-sinu)]d(sinu)}
=x√(x^2+a^2)+(a^2/2)(ln|1+sinu|-ln|1-sinu|)+C
=x√(x^2+a^2)+(a^2/2)ln|(1+sinu)/(1-sinu)|+C
=x√(x^2+a^2)+(a^2/2)ln|(1+sinu)^2/[1-(sinu)^2]|+C
=x√(x^2+a^2)+(a^2/2)ln|(1+sinu)/cosu|^2+C
=x√(x^2+a^2)+a^2ln|(sinu+1)/cosu|+C
=x√(x^2+a^2)+a^2ln|tanu+1/cosu|+C
=x√(x^2+a^2)+a^2ln|x+√[(tanu)^2+1]|+C
=x√(x^2+a^2)+a^2ln|x+√(x^2+1)|+C。

∴2∫√(x^2+a^2)dx=(1/2)x√(x^2+a^2)+(a^2/2)ln|x+√(x^2+1)|+C。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式