已知数列{An}满足A1=1,An+1=2An/An+2,求数列{An}的通项公式?
3个回答
2013-12-02
展开全部
解:∵数列{a[n]}满足a[n 1]=(a[n] 2)/(a[n] 1)
采用不动点法,设:x=(x 2)/(x 1)
x^2=2
解得不动点是:x=±√2
∴(a[n 1]-√2)/(a[n 1] √2)
={(a[n] 2)/(a[n] 1)-√2}/{(a[n] 2)/(a[n] 1) √2}
={(a[n] 2)-√2(a[n] 1)}/{(a[n] 2) √2(a[n] 1)}
={(1-√2)a[n]-(√2-2)}/{(1 √2)a[n] (√2 2)}
={(1-√2)(a[n]-√2)}/{(1 √2)(a[n] √2)}
={(1-√2)/(1 √2)}{(a[n]-√2)/(a[n] √2)}
=(2√2-3){(a[n]-√2)/(a[n] √2)}
∵a[1]=1
∴(a[1]-√2)/(a[1] √2)=2√2-3
∴{(a[n]-√2)/(a[n] √2)}是首项和公比均为2√2-3的等差数列
即:(a[n]-√2)/(a[n] √2)=(2√2-3)(2√2-3)^(n-1)=(2√2-3)^n
a[n]-√2=a[n](2√2-3)^n √2(2√2-3)^n
a[n][1-(2√2-3)^n]=√2[1 (2√2-3)^n]
∴{a[n]}的通项公式:a[n]=√2[1 (2√2-3)^n]/[1-(2√2-3)^n]
采用不动点法,设:x=(x 2)/(x 1)
x^2=2
解得不动点是:x=±√2
∴(a[n 1]-√2)/(a[n 1] √2)
={(a[n] 2)/(a[n] 1)-√2}/{(a[n] 2)/(a[n] 1) √2}
={(a[n] 2)-√2(a[n] 1)}/{(a[n] 2) √2(a[n] 1)}
={(1-√2)a[n]-(√2-2)}/{(1 √2)a[n] (√2 2)}
={(1-√2)(a[n]-√2)}/{(1 √2)(a[n] √2)}
={(1-√2)/(1 √2)}{(a[n]-√2)/(a[n] √2)}
=(2√2-3){(a[n]-√2)/(a[n] √2)}
∵a[1]=1
∴(a[1]-√2)/(a[1] √2)=2√2-3
∴{(a[n]-√2)/(a[n] √2)}是首项和公比均为2√2-3的等差数列
即:(a[n]-√2)/(a[n] √2)=(2√2-3)(2√2-3)^(n-1)=(2√2-3)^n
a[n]-√2=a[n](2√2-3)^n √2(2√2-3)^n
a[n][1-(2√2-3)^n]=√2[1 (2√2-3)^n]
∴{a[n]}的通项公式:a[n]=√2[1 (2√2-3)^n]/[1-(2√2-3)^n]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-02
展开全部
由题可得,1/a(n+1)=(1/an)+1/2,所以1/an=(n+1)/2,所以an=2/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询