如图,P为正方形ABCD内一点,且PA=1,PB=2,PC=3,求∠APB的度数.
4个回答
展开全部
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:
将△BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ
因为△BAP≌△BCQ
所以AP=CQ,BP=BQ,∠ABP=∠CBQ,∠BPA=∠BQC
因为四边形DCBA是正方形
所以∠CBA=90°
所以∠ABP+∠CBP=90°
所以∠CBQ+∠CBP=90°
即∠PBQ=90°
所以△BPQ是等腰直角三角形
所以PQ=√2*BP,∠BQP=45°
因为PA=1,PB=2,PC=3
所以PQ=2√2,CQ=1
所以CP^2=9,PQ^2+CQ^2=8+K=9
所以CP^2=PQ^2+CQ^2
所以△CPQ是直角三角形且∠CQA=90°
所以∠BQC=90°+45°=135°
所以∠BPA=∠BQC=135°
向左转|向右转
参考资料: http://hi.baidu.com/jswyc/blog/item/8e6f344d0414b6f1d72afcd8.html
将△BAP绕B点旋转90°使BA与BC重合,P点旋转后到Q点,连接PQ
因为△BAP≌△BCQ
所以AP=CQ,BP=BQ,∠ABP=∠CBQ,∠BPA=∠BQC
因为四边形DCBA是正方形
所以∠CBA=90°
所以∠ABP+∠CBP=90°
所以∠CBQ+∠CBP=90°
即∠PBQ=90°
所以△BPQ是等腰直角三角形
所以PQ=√2*BP,∠BQP=45°
因为PA=1,PB=2,PC=3
所以PQ=2√2,CQ=1
所以CP^2=9,PQ^2+CQ^2=8+K=9
所以CP^2=PQ^2+CQ^2
所以△CPQ是直角三角形且∠CQA=90°
所以∠BQC=90°+45°=135°
所以∠BPA=∠BQC=135°
向左转|向右转
参考资料: http://hi.baidu.com/jswyc/blog/item/8e6f344d0414b6f1d72afcd8.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询