1/2。
例如一批注入某种毒物的动物,在一定时间内死亡的只数;某地若干名男性健康成人中,每人血红蛋白量的测定值;等等。另有一些现象并不直接表现为数量,例如人口的男女性别、试验结果的阳性或阴性等,但可以规定男性为1,女性为0,则非数量标志也可以用数量来表示。
这些例子中所提到的量,尽管它们的具体内容是各式各样的,但从数学观点来看,它们表现了同一种情况,这就是每个变量都可以随机地取得不同的数值,而在进行试验或测量之前,我们要预言这个变量将取得某个确定的数值是不可能的。按照随机变量可能取得的值,可以把它们分为两种基本类型:
扩展资料
在研究随机变量的性质时,确定和计算它取某个数值或落入某个数值区间内的概率是特别重要的。因此,随机变量取某个数值或落入某个数值区间这样的基本事件的集合,应当属于所考虑的事件域。根据这样的直观想法,利用概率论公理化的语言,取实数值的随机变量的数学定义可确切地表述如下:
概率空间(Ω,F,p)上的随机变量x是定义于Ω上的实值可测函数,即对任意ω∈Ω,X(ω)为实数,且对任意实数x,使X(ω)≤x的一切ω组成的Ω的子集{ω:X(ω)≤x}是事件,也即是F中的元素。事件{ω:X(ω)≤x}常简记作{x≤x},并称函数F(x)=p(x≤x),-∞<x<∞ ,为x的分布函数。
2024-10-13 广告
1/参数 ,1/2。
随机变量在不同的条件下由于偶然因素影响,可能取各种随机变量不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。
如分析测试中的测定值就是一个以概率取值的随机变量,被测定量的取值可能在某一范围内随机变化,具体取什么值在测定之前是无法确定的,但测定的结果是确定的,多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性。
扩展资料
一个随机试验的可能结果(称为基本事件)的全体组成一个基本空间Ω(见概率)。随机变量x是定义于Ω上的函数,即对每一基本事件ω∈Ω,有一数值x(ω)与之对应。以掷一颗骰子的随机试验为例,它的所有可能结果见,共6个,分别记作ω1,ω2,ω3,ω4,ω5,ω6,这时,Ω={ω1,ω2,ω3,ω4,ω5,ω6},而出现的点数这个随机变量x,就是Ω上的函数x(ωk)=k,k=1,2,…,6。
又如设Ω={ω1,ω2,…,ωn}是要进行抽查的n个人的全体,那么随意抽查其中一人的身高和体重,就构成两个随机变量X和Y,它们分别是Ω上的函数:X(ωk)=“ωk的身高”,Y(ωk)=“ωk的体重”,k=1,2,…,n。
一般说来,一个随机变量所取的值可以是离散的(如掷一颗骰子的点数只取1到6的整数,电话台收到的呼叫次数只取非负整数),也可以充满一个数值区间,或整个实数轴(如液体中悬浮的微粒沿某一方向的位移)。
1/参数 ,1/2。
随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。
在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,常常关心的是两颗骰子的点和数,而并不真正关心其实际结果;
扩展资料
就是说,关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。
随机试验结果的量的表示。例如掷一颗骰子出现的点数,电话交换台在一定时间内收到的呼叫次数,随机抽查的一个人的身高,悬浮在液体中的微粒沿某一方向的位移,等等,都是随机变量的实例。