2009•重庆)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半
(2009•重庆)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平...
(2009•重庆)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.
.(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
6
5
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
我想要的答案是第三题的详细解析,答案已经知道了Q1(2,2)、Q2(12/5,7/5)、Q3( 1,7/3).求解析,过程要紧 展开
.(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为
6
5
,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
我想要的答案是第三题的详细解析,答案已经知道了Q1(2,2)、Q2(12/5,7/5)、Q3( 1,7/3).求解析,过程要紧 展开
展开全部
(1)作DP⊥OC于点P
因为∠AOC=∠DAO=∠DPO=90°
∴四边形OABC为矩形
又因为OA为∠AOC的角平分线
所以∠AOD=∠DOP=45°
所以AO=OD
∴四边形AOPD为正方形
∴D(2,2)
易证三角形ADE与三角形DPC全等
∴AE=CP=1,OE=1
∴E(0,1)
因为OC=3
所以C(3,0)
所以可求抛物线的解析式
(2)把M点的横坐标代入求得M(6/5,12/5)
又因为D(2,2)
所以可求直线DM的解析式
因为点F在y轴上
所以可求F的坐标为(0,3)
由(1)可知三角形AFD与三角形DPG全等
所以AF=PG=1,OG=1
又因为EF=2
所以EF=2GO
(3)因为点P在AB上,G(1,0),C(3,0),设P(t,2)
则PG²=(t-1)²+2²,PC²=(3-t)²+2²,GC=2
然后分三种类型进行分类讨论
因为∠AOC=∠DAO=∠DPO=90°
∴四边形OABC为矩形
又因为OA为∠AOC的角平分线
所以∠AOD=∠DOP=45°
所以AO=OD
∴四边形AOPD为正方形
∴D(2,2)
易证三角形ADE与三角形DPC全等
∴AE=CP=1,OE=1
∴E(0,1)
因为OC=3
所以C(3,0)
所以可求抛物线的解析式
(2)把M点的横坐标代入求得M(6/5,12/5)
又因为D(2,2)
所以可求直线DM的解析式
因为点F在y轴上
所以可求F的坐标为(0,3)
由(1)可知三角形AFD与三角形DPG全等
所以AF=PG=1,OG=1
又因为EF=2
所以EF=2GO
(3)因为点P在AB上,G(1,0),C(3,0),设P(t,2)
则PG²=(t-1)²+2²,PC²=(3-t)²+2²,GC=2
然后分三种类型进行分类讨论
展开全部
解:(1)由已知,得(30)C,,(22)D,, 90ADECDBBCD∠=−∠=∠∵°, 1tan2tan212AEADADEBCD∴=∠=×∠=×=i. ∴(01)E,. ····················································································································· (1分)
设过点EDC、、的抛物线的解析式为2(0)yaxbxca=++≠. 将点E的坐标代入,得1c=. 将1c=和点DC、的坐标分别代入,得 42129310.abab++=++=, ············································································································ (2分) 解这个方程组,得56136ab=−= 故抛物线的解析式为2513166yxx=−++. ································································ (3分) (2)2EFGO=成立. ································································································ (4分) ∵点M在该抛物线上,且它的横坐标为65, ∴点M的纵坐标为125. ······························································································· (5分) 设DM的解析式为1(0)ykxbk=+≠, 将点DM、的坐标分别代入,得 1122612.55kbkb+=+=, 解得1123kb=−=,. ∴DM的解析式为132yx=−+. ··············································································· (6分) ∴(03)F,,2EF=. ··································································································· (7分) 过点D作DKOC⊥于点K, 则DADK=. 90ADKFDG∠=∠=∵°, FDAGDK∴∠=∠. 又90FADGKD∠=∠=∵°, DAFDKG∴△≌△. 1KGAF∴==. 1GO∴=.···············································
设过点EDC、、的抛物线的解析式为2(0)yaxbxca=++≠. 将点E的坐标代入,得1c=. 将1c=和点DC、的坐标分别代入,得 42129310.abab++=++=, ············································································································ (2分) 解这个方程组,得56136ab=−= 故抛物线的解析式为2513166yxx=−++. ································································ (3分) (2)2EFGO=成立. ································································································ (4分) ∵点M在该抛物线上,且它的横坐标为65, ∴点M的纵坐标为125. ······························································································· (5分) 设DM的解析式为1(0)ykxbk=+≠, 将点DM、的坐标分别代入,得 1122612.55kbkb+=+=, 解得1123kb=−=,. ∴DM的解析式为132yx=−+. ··············································································· (6分) ∴(03)F,,2EF=. ··································································································· (7分) 过点D作DKOC⊥于点K, 则DADK=. 90ADKFDG∠=∠=∵°, FDAGDK∴∠=∠. 又90FADGKD∠=∠=∵°, DAFDKG∴△≌△. 1KGAF∴==. 1GO∴=.···············································
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答案
解:(1)由已知,得C(3,0),D(2,2),
∵∠ADE=90°-∠CDB=∠BCD,
∴AE=AD·tan∠ADE=2×tan∠BCD=2×=1
∴E(0,1)
设过点E、D、C的抛物线的解析式为y=ax2+bx+c(a≠0),
将点E的坐标代入,得c=1,
将c=1和点D、C的坐标分别代入,得
,解这个方程组,得,
故抛物线的解析式为y=;
(2)EF=2GO成立,
∵点M在该抛物线上,且它的横坐标为,
∴点M的纵坐标为,
设DM的解析式为y=kx+b1(k≠0),
将点D、M的坐标分别代入,得
,解得,
∴DM的解析式为y=-x+3,
∴F(0,3),EF=2,
如图甲,过点D作DK⊥OC于点K,则DA=DK,
∵∠ADK=∠FDG=90°,
∴∠FDA=∠GDK,
又∵∠FAD=∠GKD=90°,
∴△DAF≌△DKG,
∴KG=AF=1,
∴CO=1,
∴EF=2GO;
(3)∵点P在AB上,G(1,0),C(3,0),则设P(t,2),
∴PG2=(t-1)2+22,PC2=(3-t)2+22,GC=2,
①若PG=PC,则(t-1)2+22=(3-t)2+22,解得t=2,
∴P(2,2),此时点Q与点P重合,
∴Q(2,2);
②若PG=GC,则(t-1)2+22=22,解得t=1,
∴P(1,2),此时GP⊥x轴,CP与该抛物线在第一象限内的交点Q的横坐标为1,
∴点Q的纵坐标为,
∴Q(1,);
③若PC=GC,则(3-t)2+22=22,解得t=3,
∴P(3,2),此时 PC=GC=2,△PCG是等腰直角三角形,
如图乙,过点Q作QH⊥x轴于点H,则QH=GH,设QH=h,
∴Q(h+1,h),
∴(h+1)2+(h+1)+1=h,解得h1=,h2=-2(舍去),
∴,
综上所述,存在三个满足条件的点Q,即Q(2,2)或Q或。
答案见http://www.mofangge.com/html/qDetail/02/c3/201112/y3xyc302151212.html
解:(1)由已知,得C(3,0),D(2,2),
∵∠ADE=90°-∠CDB=∠BCD,
∴AE=AD·tan∠ADE=2×tan∠BCD=2×=1
∴E(0,1)
设过点E、D、C的抛物线的解析式为y=ax2+bx+c(a≠0),
将点E的坐标代入,得c=1,
将c=1和点D、C的坐标分别代入,得
,解这个方程组,得,
故抛物线的解析式为y=;
(2)EF=2GO成立,
∵点M在该抛物线上,且它的横坐标为,
∴点M的纵坐标为,
设DM的解析式为y=kx+b1(k≠0),
将点D、M的坐标分别代入,得
,解得,
∴DM的解析式为y=-x+3,
∴F(0,3),EF=2,
如图甲,过点D作DK⊥OC于点K,则DA=DK,
∵∠ADK=∠FDG=90°,
∴∠FDA=∠GDK,
又∵∠FAD=∠GKD=90°,
∴△DAF≌△DKG,
∴KG=AF=1,
∴CO=1,
∴EF=2GO;
(3)∵点P在AB上,G(1,0),C(3,0),则设P(t,2),
∴PG2=(t-1)2+22,PC2=(3-t)2+22,GC=2,
①若PG=PC,则(t-1)2+22=(3-t)2+22,解得t=2,
∴P(2,2),此时点Q与点P重合,
∴Q(2,2);
②若PG=GC,则(t-1)2+22=22,解得t=1,
∴P(1,2),此时GP⊥x轴,CP与该抛物线在第一象限内的交点Q的横坐标为1,
∴点Q的纵坐标为,
∴Q(1,);
③若PC=GC,则(3-t)2+22=22,解得t=3,
∴P(3,2),此时 PC=GC=2,△PCG是等腰直角三角形,
如图乙,过点Q作QH⊥x轴于点H,则QH=GH,设QH=h,
∴Q(h+1,h),
∴(h+1)2+(h+1)+1=h,解得h1=,h2=-2(舍去),
∴,
综上所述,存在三个满足条件的点Q,即Q(2,2)或Q或。
答案见http://www.mofangge.com/html/qDetail/02/c3/201112/y3xyc302151212.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
追问
看的不是很懂,能不能讲一下
追答
∵AB∥OC,∴∠ADO=∠COD=∠ACD,∴AD=OA,∴D(2,2)。
由DC⊥DE得ΔDAE∽ΔCBD,
∴AE/AD=BD/BC,∴AE=BD=1,∴E(0,1),
有了三点坐标可求解析式了。
⑵求证EF=2OG。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询