要这道题的详细过程,,急急急,!!!!!!

formeforyouok
2014-05-20 · TA获得超过3234个赞
知道小有建树答主
回答量:1154
采纳率:100%
帮助的人:998万
展开全部



解:(1)当m=3时,y=-x²+6x。

令y=0得-x²+6x=0,解得,x1=0,x2=6。∴A(6,0)。

当x=1时,y=5。∴B(1,5)。

∵抛物线y=-x²+6x的对称轴为直线x=3,且B,C关于对称轴对称,

∴BC=4。

(2)过点C作CH⊥x轴于点H(如图1)

由已知得,∠ACP=∠BCH=90°,∴∠ACH=∠PCB。

又∵∠AHC=∠PBC=90°,∴△AGH∽△PCB。

∴AH/CH=PB/BC。

∵抛物线y=-x²+2mx的对称轴为直线x=m,其中m>1,且B,C关于对称轴对称,

∴BC=2(m-1)。

∵B(1,2m-1),P(1,m),∴BP=m-1。

又∵A(2m,0),C(2m-1,2m-1),∴H(2m-1,0)。

∴AH=1,CH=2m-1,

∴1/(2m-1)=(m-1)/2(m-1),解得m= 3/2。

(3)存在。∵B,C不重合,∴m≠1。

(I)当m>1时,BC=2(m-1),PM=m,BP=m-1,

(i)若点E在x轴上(如图1),

∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,PC=EP。

∴△BPC≌△MEP,∴BC=PM,即2(m-1)=m,解得m=2。

此时点E的坐标是(2,0)。

(ii)若点E在y轴上(如图2),过点P作PN⊥y轴于点N,

易证△BPC≌△NPE,

∴BP=NP=OM=1,即m-1=1,解得,m=2。

此时点E的坐标是(0,4)。

(II)当0<m<1时,BC=2(1-m),PM=m,BP=1-m,

(i)若点E在x轴上(如图3),

易证△BPC≌△MEP,

∴BC=PM,即2(1-m)=m,解得,m=2/3。

此时点E的坐标是(4/3 ,0)。

(ii)若点E在y轴上(如图4),

过点P作PN⊥y轴于点N,易证△BPC≌△NPE,

∴BP=NP=OM=1,即1-m=1,∴m=0(舍去)。

综上所述,当m=2时,点E的坐标是(0,2)或(0,4),

             当m=2/3时,点E的坐标是(4/3,0)。

宇宙中心校长
2014-05-20 · TA获得超过1万个赞
知道大有可为答主
回答量:4405
采纳率:95%
帮助的人:1068万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式