已知向量a=(cosx,sinx),向量b=(cosx,cosx),若f(x)=向量a﹡向量b
①求f(x)的最小正周期及f(8分之3元)的值,②求f(x)的单调增区间.注:元是3.1415926..........
①求f(x)的最小正周期及f(8分之3元)的值,②求f(x)的单调增区间.注:元是3.1415926.......
展开
1个回答
展开全部
解:(1)∵a =(cosx,sinx),b =(cosx,cosx)
∴f(x)=(cosx)^2+sinxcosx
=1/2 * (1+cos2x) +1/2 sin2x (二倍角公式)
=1/2 +1/2 (cos2x+sin2x)
=1/2 +√2/2 sin(2x+π/4)
∴函数f(x)的最小正周期T=2π/2=π
f(3π/8)=1/2 +√2/2 sin(2*3π/8+π/4)
=1/2 +√2/2 sinπ
=1/2
(2)
又2kπ-π/2 ≤2x+π/4≤2kπ+π/2 ( k∈Z)
解得kπ-3π/8 ≤x≤ kπ+π/8 ( k∈Z)
f(x)的单调增区间[kπ-3π/8 , kπ+π/8] ( k∈Z)
∴f(x)=(cosx)^2+sinxcosx
=1/2 * (1+cos2x) +1/2 sin2x (二倍角公式)
=1/2 +1/2 (cos2x+sin2x)
=1/2 +√2/2 sin(2x+π/4)
∴函数f(x)的最小正周期T=2π/2=π
f(3π/8)=1/2 +√2/2 sin(2*3π/8+π/4)
=1/2 +√2/2 sinπ
=1/2
(2)
又2kπ-π/2 ≤2x+π/4≤2kπ+π/2 ( k∈Z)
解得kπ-3π/8 ≤x≤ kπ+π/8 ( k∈Z)
f(x)的单调增区间[kπ-3π/8 , kπ+π/8] ( k∈Z)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询