4个回答
2013-12-19
展开全部
1.观察法
用于简单的解析式。
y=1-√x≤1,值域(-∞, 1]
y=(1 x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数。
y=x^2-4x 3=(x-2)^2-1≥-1,值域[-1, +∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3. 换元法
多用于复合型函数。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
4. 不等式法
用不等式的基本性质,也是求值域的常用方法。
y=(e^x 1)/(e^x-1), (0<x<1).
0<x<1,
1<e^x<e, 0<e^x-1<e-1,
1/(e^x-1)>1/(e-1),
y=1 2/(e^x-1)>1 2/(e-1).值域(1 2/(e-1),+∞).
5. 最值法
如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].
因此,求值域的方法与求最值的方法是相通的.
6. 反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.
7. 单调性法
若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b),f(a)]
用于简单的解析式。
y=1-√x≤1,值域(-∞, 1]
y=(1 x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数。
y=x^2-4x 3=(x-2)^2-1≥-1,值域[-1, +∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3. 换元法
多用于复合型函数。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
4. 不等式法
用不等式的基本性质,也是求值域的常用方法。
y=(e^x 1)/(e^x-1), (0<x<1).
0<x<1,
1<e^x<e, 0<e^x-1<e-1,
1/(e^x-1)>1/(e-1),
y=1 2/(e^x-1)>1 2/(e-1).值域(1 2/(e-1),+∞).
5. 最值法
如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].
因此,求值域的方法与求最值的方法是相通的.
6. 反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.
7. 单调性法
若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b),f(a)]
展开全部
(-∞,4]
解:对函数式进行配方得到:y=-x2-2x+3=-(x+1)2+4,
∵函数的定义域是R,于是可得函数的最大值为4,从而函数的值域为:(-∞,4].
故答案为:(-∞,4].
解:对函数式进行配方得到:y=-x2-2x+3=-(x+1)2+4,
∵函数的定义域是R,于是可得函数的最大值为4,从而函数的值域为:(-∞,4].
故答案为:(-∞,4].
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-19
展开全部
先求最小值为2,所以值域为2到正无穷大。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-12-19
展开全部
二次函数配方 y=x �0�5+2x+3=(x+1)�0�5+2 值域[ 2,+00)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询