关于圆形的所有的公式

 我来答
蔷祀
高粉答主

2018-10-14 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:15.5万
展开全部

周长:C=2πr (r半径)

面积:S=πr²

半圆周长:C=πr+2r

半圆面积:S=πr²/2

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。 

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。 

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。 

扩展资料

圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母π表示,

≈3.1415926535......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,

不能直接说圆的周长是直径的3.14倍。

形:

1.由弦和它所对的一段弧围成的图形叫做弓形。

2. 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(sector)。

点和圆位置关系

①P在圆O外,则 PO>r。

②P在圆O上,则 PO=r。

③P在圆O内,则 PO<r。

反之亦然。

平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:

①如果(x0-a)²+(y0-b)²<r²,则P在圆内。

②如果(x0-a)²+(y0-b)²=r²,则P在圆上。

③如果(x0-a)²+(y0-b)²>r²,则P在圆外。

赞的都帅
高粉答主

2018-06-25 · 说的都是干货,快来关注
知道小有建树答主
回答量:150
采纳率:100%
帮助的人:5万
展开全部
一.面积公式:
1.圆的面积:S=πr²=πd²/4

2.扇形弧长:L=圆心角(弧度制) * r = n°πr/180°(n为圆心角)

3.扇形面积:S=nπ r²/360=Lr/2(L为扇形的弧长)

4.圆的直径: d=2r

5.圆锥侧面积: S=πrl(l为母线长)

6.圆锥底面半径: r=n°/360°L(L为母线长)(r为底面半径)

二.周长公式:圆的周长:C=2πr 或 C=πd
三.圆的方程
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x^2+y^2=r^2。

2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:

(1)、当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;

(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);

(3)、当D^2+E^2-4F<0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)

圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0

圆的离心率e=0,在圆上任意一点的半径都是r。

经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2

在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ROSflyer
2014-02-01 · TA获得超过1364个赞
知道小有建树答主
回答量:418
采纳率:100%
帮助的人:85.8万
展开全部
  1. 周长:C=2πr (r半径)
    面积:S=πr²
    半圆周长:C=πr+2r
    半圆面积:S=πr²/2

    圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

    圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

    圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

    直线与圆有3种位置关系:
    无公共点为相离;
    有两个公共点为相交;
    圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
    以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):

    AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

    两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

    两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
酱伽利略
2018-11-25 · TA获得超过808个赞
知道答主
回答量:28
采纳率:0%
帮助的人:9284
展开全部
周长:C=2πr (r半径)

面积:S=πr²

半圆周长:C=πr+2r

半圆面积:S=πr²/2

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

扩展资料:

圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母π表示,

≈3.1415926535......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,

不能直接说圆的周长是直径的3.14倍。

形:

1.由弦和它所对的一段弧围成的图形叫做弓形。

2. 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(sector)。

点和圆位置关系

①P在圆O外,则 PO>r。

②P在圆O上,则 PO=r。

③P在圆O内,则 PO<r。

反之亦然。

平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:

①如果(x0-a)²+(y0-b)²<r²,则P在圆内。

②如果(x0-a)²+(y0-b)²=r²,则P在圆上。

③如果(x0-a)²+(y0-b)²>r²,则P在圆外。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
依以筠8W
2019-05-30
知道答主
回答量:6
采纳率:0%
帮助的人:1996
展开全部
一.面积公式:
1.圆的面积:S=πr²=πd²/4

2.扇形弧长:L=圆心角(弧度制) * r = n°πr/180°(n为圆心角)

3.扇形面积:S=nπ r²/360=Lr/2(L为扇形的弧长)

4.圆的直径: d=2r

5.圆锥侧面积: S=πrl(l为母线长)

6.圆锥底面半径: r=n°/360°L(L为母线长)(r为底面半径)

二.周长公式:圆的周长:C=2πr 或 C=πd
三.圆的方程
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x^2+y^2=r^2。

2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:

(1)、当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;

(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);

(3)、当D^2+E^2-4F<0时,方程不表示任何图形。

3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)

圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0

圆的离心率e=0,在圆上任意一点的半径都是r。

经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2

在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式