四边形ABCD中,∠ACB=∠BAD=105°,∠ABC=∠ADC=45°,求证CD=AB

 我来答
教育行业每日节奏
2013-11-09 · TA获得超过8.1万个赞
知道小有建树答主
回答量:1.5万
采纳率:93%
帮助的人:792万
展开全部
证明:
∵∠A+∠C+∠ABC+∠ADC=360º
即 45º+45º+105º+∠ADC=360º
∴∠ADC=∠ADB+∠BDC=165º
∠BDC=165º-∠ADB=60º
∵∠ABD=180º-∠A-∠ADB=180º-45º-105º=30º
∴∠DBC=105º-30º=75º
作DE平分∠BDC,交BC于E
则∠BDE=∠CDE=30º
∵∠DEB=180º-75º-30º=75º
∴∠DEB=∠DBE=75º
∴BD=DE
又∵∠A=∠C=45º
∠ABD=∠CDE=30º
∴⊿ABD≌⊿CDE(AAS)
∴CD=AB
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式