已知a>0,函数f(x)=e的x次方/a+a/e的x次方在R上满足f(-x)=f(x),其中e为自然对数的底数,证明a=1
1个回答
2014-01-22
展开全部
因为函数是偶函数,
所以f(x)=f(-x)
得(e^x)/a+a/(e^x)=e^(-x)/a+a/[(e^(-x))]
(e^x)/a+a/(e^x)=1/(ae^x)+ae^x
即(e^x)(1/a-a)+(a-1/a)/(e^x)=0
(a-1/a)[1/(e^x)-e^x]=0
由于x的任意性,只有a-1/a=0
即a^2-1=0
由a>0,故a=1.
所以f(x)=f(-x)
得(e^x)/a+a/(e^x)=e^(-x)/a+a/[(e^(-x))]
(e^x)/a+a/(e^x)=1/(ae^x)+ae^x
即(e^x)(1/a-a)+(a-1/a)/(e^x)=0
(a-1/a)[1/(e^x)-e^x]=0
由于x的任意性,只有a-1/a=0
即a^2-1=0
由a>0,故a=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询