高考数学函数求导题
若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点(1)设h(...
若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点 (1)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.
展开
3个回答
展开全部
解,先对fx进行求导,得f’x=3x方+2ax+b因为1和-1是极值点
所以f(1)=f(-1)=0解得a=0,b=-3 所以f'x=3x方-3=3(x方-1) fx=x三次方-3x
故hx=9(3x6次方-9x4次方-10x方+4)-c
对hx求导得h'x=18x5次方-36x3次方-20x)
令其=0解得x=有3个值,
但=0不一定都是极值点,还要逐个验证,也就是极值点的左边和又边在导函数上不能同时大于0或小于0.....如有不懂,请追问
饿.可能有写地方算错了,但思路大概是这样,高三党飘过
所以f(1)=f(-1)=0解得a=0,b=-3 所以f'x=3x方-3=3(x方-1) fx=x三次方-3x
故hx=9(3x6次方-9x4次方-10x方+4)-c
对hx求导得h'x=18x5次方-36x3次方-20x)
令其=0解得x=有3个值,
但=0不一定都是极值点,还要逐个验证,也就是极值点的左边和又边在导函数上不能同时大于0或小于0.....如有不懂,请追问
饿.可能有写地方算错了,但思路大概是这样,高三党飘过
追问
可是答案上说有九个零点啊?
追答
。。。。。待我思考一下
展开全部
z这种题简单诶,只要先求导,然后把1,-1带入,求出a,b,然后将函数带入再次求导,作一个函数图像即可
追问
主要是答案上还分了好多个区间讨论,我都不知道怎么做啊?
追答
差不多有,我刚刚动笔算了一下,发现后来它有好多个极值点的,也就是绕的弯较多,也就会和横轴有更多焦点,零点也就多了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询