初三旋转数学题!!!急急急!!!!!!~~~~~
1个回答
展开全部
(1)一般地,设逆时针旋转θ。由△BFD1,得:
D1F/sin(90-θ)=BF/sin30=BD1/sin(60+θ),即:
D1F=BCcosθ/sin(60+θ),BF=BC/sin(60+θ)
E1F=E1D1-D1F=BC[2/√3
-cosθ/sin(60+θ)]
由△E1EF与△GAF相似,得:FG/E1F=AF/BF
=>
E1G/E1F=BC/BF
所以:E1G=BC*E1F/BF=BC[4sin(60+θ)/√3
-2cosθ]
用和角公式可化简为:E1G=BC*2sinθ/√3
当θ=45时,可知E1G/BC=√2/√3
(2)易证:N为E1D1的中点,设E1D1=1,则ND1=BN=E1D1/2=1/2,BD1=BD2=√3/2
由△D2MN与△D1BN相似,得:D2M/D1B=D2N/D1N=(BD2-BN)/(1/2)=(√3/2
-1/2)/(1/2)=√3
-1
D2M=√3/2*(√3
-1)=3/2-√3/2
E2M=E1D1-D2M=1-(3/2-√3/2)=√3/2
-1/2
所以:E2M/BN=√3
-1
这里同时证明了:ME2=MN
D1F/sin(90-θ)=BF/sin30=BD1/sin(60+θ),即:
D1F=BCcosθ/sin(60+θ),BF=BC/sin(60+θ)
E1F=E1D1-D1F=BC[2/√3
-cosθ/sin(60+θ)]
由△E1EF与△GAF相似,得:FG/E1F=AF/BF
=>
E1G/E1F=BC/BF
所以:E1G=BC*E1F/BF=BC[4sin(60+θ)/√3
-2cosθ]
用和角公式可化简为:E1G=BC*2sinθ/√3
当θ=45时,可知E1G/BC=√2/√3
(2)易证:N为E1D1的中点,设E1D1=1,则ND1=BN=E1D1/2=1/2,BD1=BD2=√3/2
由△D2MN与△D1BN相似,得:D2M/D1B=D2N/D1N=(BD2-BN)/(1/2)=(√3/2
-1/2)/(1/2)=√3
-1
D2M=√3/2*(√3
-1)=3/2-√3/2
E2M=E1D1-D2M=1-(3/2-√3/2)=√3/2
-1/2
所以:E2M/BN=√3
-1
这里同时证明了:ME2=MN
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询