高一数学必修一函数的单调性
3个回答
展开全部
1.
设f(x)=ax^2
bx
c,a≠0
f(0)=c=0
c=0
f(x
1)-f(x)=a(x
1)^2
b(x
1)-(ax^2
bx)
=a(2x
1)
b
=2ax
(a
b)
=2x
a=1
b=-1
f(x)=x^2-x;
2.
f(x)=x^2-x的图像是顶点为(1/2,-1/4),开口向上的抛物线,
所以只要y=2x
m在(1/2,-1/4)下方即可,
2(1/2)
m<-1/4
m<-5/4
f(0)=c=1
f(x)=x^2-x
1
2.
顶点为(1/2,3/4),
只要y=2x
m在(1/2,3/4)下方即可,
2(1/2)
m<3/4
m<-1/4
设f(x)=x
√1
2x,x∈[-1/2,
∞)
取x1<x2,且x1、x2∈[-1/2,
∞),则x1-x2<0,√1
2x1-√1
2x2<0
∴f(x1)-f(x2)=(x1-x2)
(√1
2x1-√1
2x2)<0,即f(x1)<f(x2)
∴函数f(x)在[-1/2,
∞)是增函数。
∴最小值为-1/2
值域为[-1/2,
∞)
定义域:
明确几种特殊函数的定义域如带根的(大于等于零),未知数在分母的(不等于零),对数(大于零)等。值域:(1)配方法:适用于二次函数型(2)分离常数法:分子分母都有未知数例:y=(2x
1)/(x-3)
=[2(x-3)
7]/(x-3)
=2
7/(x-3)因为7/(x-3)不等于0所以y不等于2(3)反解法:例:y=(2x
1)/(x-3)
(y-2)x-3y-1=0所以x=(3y
1)/(y-2)所以y不等于2
f(x)=(ax
b)/(cx
d)f(x)不等于a/c
(4)判别式法:反解之后用判别式(5)换元法(6)图像法
F(x)=(2x
4-5)/(x
2)=2-5/(x
2)x属于[-5,-3]x
2必小于零则1/(x
2)在[-5,-3]上单调递减则-5/(x
2)在[-5,-3]上单调递增则2-5/(x
2)在[-5,-3]上单调递增所以yMAX=F(-3)=7yMIN=F(-5)=11/3
【分析】判断一个函数的奇偶性,首先判断函数的定义域是否关于原点对称,若不对称,则非奇非偶;若对称,则再判断f(-x)与f(x)的关系,f(-x)=f(x)为偶,f(-x)=-f(x)为奇,否则为非奇非偶。
A.解:易知f(x)=sinx2定义域关于原点对称,
又f(-x)=sin(-x)2=sinx2=f(x),所以f(x)为偶函数。B.解:易知f(x)=tanx
tanx/2定义域为x不=π/2
kπ,关于原点不对称,
所以f(x)为非奇非偶函数。C.解:f(x)=sinx
cosx定义域关于原点对称,
又f(-x)=sin(-x)
cos(-x)=cosx-sinx,既不=f(x),又不=-f(x)
所以f(x)为非奇非偶函数。D.解:易知f(x)=1/3cosx/2定义域关于原点对称,
又f(-x)=1/3cos(-x)/2=1/3cosx/2=f(x),所以f(x)为偶函数。
设f(x)=ax^2
bx
c,a≠0
f(0)=c=0
c=0
f(x
1)-f(x)=a(x
1)^2
b(x
1)-(ax^2
bx)
=a(2x
1)
b
=2ax
(a
b)
=2x
a=1
b=-1
f(x)=x^2-x;
2.
f(x)=x^2-x的图像是顶点为(1/2,-1/4),开口向上的抛物线,
所以只要y=2x
m在(1/2,-1/4)下方即可,
2(1/2)
m<-1/4
m<-5/4
f(0)=c=1
f(x)=x^2-x
1
2.
顶点为(1/2,3/4),
只要y=2x
m在(1/2,3/4)下方即可,
2(1/2)
m<3/4
m<-1/4
设f(x)=x
√1
2x,x∈[-1/2,
∞)
取x1<x2,且x1、x2∈[-1/2,
∞),则x1-x2<0,√1
2x1-√1
2x2<0
∴f(x1)-f(x2)=(x1-x2)
(√1
2x1-√1
2x2)<0,即f(x1)<f(x2)
∴函数f(x)在[-1/2,
∞)是增函数。
∴最小值为-1/2
值域为[-1/2,
∞)
定义域:
明确几种特殊函数的定义域如带根的(大于等于零),未知数在分母的(不等于零),对数(大于零)等。值域:(1)配方法:适用于二次函数型(2)分离常数法:分子分母都有未知数例:y=(2x
1)/(x-3)
=[2(x-3)
7]/(x-3)
=2
7/(x-3)因为7/(x-3)不等于0所以y不等于2(3)反解法:例:y=(2x
1)/(x-3)
(y-2)x-3y-1=0所以x=(3y
1)/(y-2)所以y不等于2
f(x)=(ax
b)/(cx
d)f(x)不等于a/c
(4)判别式法:反解之后用判别式(5)换元法(6)图像法
F(x)=(2x
4-5)/(x
2)=2-5/(x
2)x属于[-5,-3]x
2必小于零则1/(x
2)在[-5,-3]上单调递减则-5/(x
2)在[-5,-3]上单调递增则2-5/(x
2)在[-5,-3]上单调递增所以yMAX=F(-3)=7yMIN=F(-5)=11/3
【分析】判断一个函数的奇偶性,首先判断函数的定义域是否关于原点对称,若不对称,则非奇非偶;若对称,则再判断f(-x)与f(x)的关系,f(-x)=f(x)为偶,f(-x)=-f(x)为奇,否则为非奇非偶。
A.解:易知f(x)=sinx2定义域关于原点对称,
又f(-x)=sin(-x)2=sinx2=f(x),所以f(x)为偶函数。B.解:易知f(x)=tanx
tanx/2定义域为x不=π/2
kπ,关于原点不对称,
所以f(x)为非奇非偶函数。C.解:f(x)=sinx
cosx定义域关于原点对称,
又f(-x)=sin(-x)
cos(-x)=cosx-sinx,既不=f(x),又不=-f(x)
所以f(x)为非奇非偶函数。D.解:易知f(x)=1/3cosx/2定义域关于原点对称,
又f(-x)=1/3cos(-x)/2=1/3cosx/2=f(x),所以f(x)为偶函数。
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)当x=-1,f(x)=(x-1)^2+1,因为-5<=x<=5,所以f(x)在x=1处有最小值1,在x=-5处有最大值37
(2)设-5<=x1<x2<=5,
有x2-x1>0
-10<x1+x2<10
-5<-(x1+x2)/2<5
f(x2)-f(x1)=(x2^2+2ax2+2)-(x1^2+2ax1+2)=(x2-x1)(x2+x1+2a)
所以当x2+x1+2a>0,
即a>-(x2+x1)/2
,a>5 时
f(x)是单调增加,
当x2+x1+2a<0,即
a<-5时,f(x)是单调减少.
所以a>5或a<-5,f(x)在区间[-5,5]上是单调函数.
(2)设-5<=x1<x2<=5,
有x2-x1>0
-10<x1+x2<10
-5<-(x1+x2)/2<5
f(x2)-f(x1)=(x2^2+2ax2+2)-(x1^2+2ax1+2)=(x2-x1)(x2+x1+2a)
所以当x2+x1+2a>0,
即a>-(x2+x1)/2
,a>5 时
f(x)是单调增加,
当x2+x1+2a<0,即
a<-5时,f(x)是单调减少.
所以a>5或a<-5,f(x)在区间[-5,5]上是单调函数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询