在三角形ABC中,3sin A+4cos B=6,3cosA+4sinB=1,则角C为?
1个回答
2014-09-03
展开全部
∵3sinA+4cosB=6
∴(3sinA+4cosB)^2=36
∴[9(sinA)^2+16(cosB)^2+24sinAcosB=36(1)
∵4sinB+3cosA=1
∴(4sinB+3cosA)^2=1
∴16(sinB)^2+9(cosA)^2+24cosAsinB=1(2)
(1)+(2):9(sinA)^2+16(cosB)^2+24sinAcosB]+[16(sinB)^2+9(cosA)^2+24cosAsinB]=37
∴[9(sinA)^2+9(cosA)^2]+[16(cosB)^2+16(sinB)^2]+24(sinAcosB+cosAsinB)=37
∴9+16+24sin(A+B)=37
∴24sin(π-C)=12
∴sinC=1/2
∴C=π/6或5π/6
∵当C=5π/6,即A+B=π/6时,A<π/6
∴cosA>cos(π/6)=(√3)/2
∴3cosA>3(√3)/2>1
∵sinA>0
∴4sinB>0
∴4sinB+3cosA>1,与题中的4sinB+3cosA=1矛盾
∴C=π/6
==================================================================
亲~你好!````(^__^)````
很高兴为您解答,祝你学习进步,身体健康,家庭和谐,天天开心!有不明白的可以追问!
如果有其他问题请另发或点击向我求助,答题不易,请谅解.
如果您认可我的回答,请点击下面的【采纳为满意回答】或者手机提问的朋友在客户端右上角点击【评价】,谢谢!
你的好评是我前进的动力!! 你的采纳也会给你带去财富值的。(祝你事事顺心)
==================================================================
∴(3sinA+4cosB)^2=36
∴[9(sinA)^2+16(cosB)^2+24sinAcosB=36(1)
∵4sinB+3cosA=1
∴(4sinB+3cosA)^2=1
∴16(sinB)^2+9(cosA)^2+24cosAsinB=1(2)
(1)+(2):9(sinA)^2+16(cosB)^2+24sinAcosB]+[16(sinB)^2+9(cosA)^2+24cosAsinB]=37
∴[9(sinA)^2+9(cosA)^2]+[16(cosB)^2+16(sinB)^2]+24(sinAcosB+cosAsinB)=37
∴9+16+24sin(A+B)=37
∴24sin(π-C)=12
∴sinC=1/2
∴C=π/6或5π/6
∵当C=5π/6,即A+B=π/6时,A<π/6
∴cosA>cos(π/6)=(√3)/2
∴3cosA>3(√3)/2>1
∵sinA>0
∴4sinB>0
∴4sinB+3cosA>1,与题中的4sinB+3cosA=1矛盾
∴C=π/6
==================================================================
亲~你好!````(^__^)````
很高兴为您解答,祝你学习进步,身体健康,家庭和谐,天天开心!有不明白的可以追问!
如果有其他问题请另发或点击向我求助,答题不易,请谅解.
如果您认可我的回答,请点击下面的【采纳为满意回答】或者手机提问的朋友在客户端右上角点击【评价】,谢谢!
你的好评是我前进的动力!! 你的采纳也会给你带去财富值的。(祝你事事顺心)
==================================================================
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询