(2012上海)如图在Rt△ABC中,∠ACB=90°,D是边AB的中点,BE⊥CD,垂足为点E.己知AC=15,cosA=3/5.
展开全部
1、∵AC=15,cosA=3/5
∴在Rt△ABC中:cosA=AC/AB,AB=AC/cosA=15/(3/5)=25
∴BC=√(AB²-AC²)=√(25²-15²)=20
∵D是边AB中点
∴CD=BD=AD=1/2AB=25/2=12.5
2、∵AD=CD
∴∠A=∠DCA
∴sin∠BCD=sin(90°-∠DCA)=cos∠DCA=cos∠A=3/5
∵BE⊥CD
∴在Rt△BCE中
BE=BC×sin∠BCD=20×3/5=12
∴在Rt△BDE中
根据勾股定理:BD²=DE²+BE²
DE²=(25/2)²-12²=49/4
DE=7/2
∴sin∠DBE=DE/BD=(7/2)/(25/2)=7/25
∴在Rt△ABC中:cosA=AC/AB,AB=AC/cosA=15/(3/5)=25
∴BC=√(AB²-AC²)=√(25²-15²)=20
∵D是边AB中点
∴CD=BD=AD=1/2AB=25/2=12.5
2、∵AD=CD
∴∠A=∠DCA
∴sin∠BCD=sin(90°-∠DCA)=cos∠DCA=cos∠A=3/5
∵BE⊥CD
∴在Rt△BCE中
BE=BC×sin∠BCD=20×3/5=12
∴在Rt△BDE中
根据勾股定理:BD²=DE²+BE²
DE²=(25/2)²-12²=49/4
DE=7/2
∴sin∠DBE=DE/BD=(7/2)/(25/2)=7/25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询