高一数学:数列问题?
展开全部
(1)
a(n+1)= 3^n -2an
a(n+1) - 3^(n+1)/5 = -2( an - 3^n/5)
=> {an - 3^n/5} 是等比数列, q=-2
(2)
a1=3/2
an - 3^n/5 = (-2)^(n-1) . [ a1 - 3/5]
= (9/10)(-2)^(n-1)
an =3^n/5 + (9/10)(-2)^(n-1)
连续3项成等差数列
an + a(n+2) = 2a(n+1)
3^n/5 + (9/10)(-2)^(n-1) + 3^(n+2)/5 + (9/10)(-2)^(n+1)=2[3^(n+1)/5 + (9/10)(-2)^n]
2(3^n) +(9/2)(-2)^(n-1) =2[3^(n+1)/5 + (9/10)(-2)^n]
(4/5)3^n = (81/20)(-2)^n
(-2/3)^n =16/81
n=4
=>
a4, a5,a6 成等差数列
(3)
an = 3^n/5 + (-2)^(n-1) . [ a1 - 3/5]
...
a(n+1)= 3^n -2an
a(n+1) - 3^(n+1)/5 = -2( an - 3^n/5)
=> {an - 3^n/5} 是等比数列, q=-2
(2)
a1=3/2
an - 3^n/5 = (-2)^(n-1) . [ a1 - 3/5]
= (9/10)(-2)^(n-1)
an =3^n/5 + (9/10)(-2)^(n-1)
连续3项成等差数列
an + a(n+2) = 2a(n+1)
3^n/5 + (9/10)(-2)^(n-1) + 3^(n+2)/5 + (9/10)(-2)^(n+1)=2[3^(n+1)/5 + (9/10)(-2)^n]
2(3^n) +(9/2)(-2)^(n-1) =2[3^(n+1)/5 + (9/10)(-2)^n]
(4/5)3^n = (81/20)(-2)^n
(-2/3)^n =16/81
n=4
=>
a4, a5,a6 成等差数列
(3)
an = 3^n/5 + (-2)^(n-1) . [ a1 - 3/5]
...
2020-06-28
展开全部
这是高一的数列问题。求数列时间,把数列的公式背一下,然后灵活的带入。分析经典案例。
更多追问追答
追答
请问你想要详细的答案吗?
最后一题吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询