A是n阶实对称阵,XTAX=0.证明,A是零矩阵

 我来答
茹翊神谕者

2021-10-10 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1638万
展开全部

简单计算一下即可,答案如图所示

胥旺所寒
2020-04-19 · TA获得超过1226个赞
知道小有建树答主
回答量:1933
采纳率:100%
帮助的人:10万
展开全部
首先,A是n阶实对称矩阵,则A必可相似于对角矩阵,设对角矩阵B=P^(-1)AP,P^(-1)为P的逆,则A=PBP^(-1),对任一的n维向量X,都有X'AX=0,则可推出B的对角元素全是0,也就是B=0;根据A=PBP^(-1),可知A=0,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式