求函数y=2cos²x+sin2x-1的最值和最小正周期。(过程详细点!)

一缕阳光304
2012-11-10 · TA获得超过1.3万个赞
知道大有可为答主
回答量:5476
采纳率:83%
帮助的人:1479万
展开全部
解:由二倍角公式:cos2x=2cos²x-1
得:y=2cos²x+sin2x-1
=cos2x+sin2x
=√2sin(2x+π/4)
所以,最小正周期是:2π/2=π
当2x+π/4=2kπ+π/2,即x=kπ+π/8时,y的最大值为:√2
当2x+π/4=2kπ-π/2,即x=kπ-3π/8时,y的最小值为:-√2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式