数列﹛an﹜的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn(1)求...
数列﹛an﹜的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn(1)求证:数列{Sn/n}是等比数列(2)求﹛an﹜的通项公式...
数列﹛an﹜的前n项和为Sn,已知a1=1,an+1=(n+2)/nSn (1)求证:数列{Sn/n}是等比数列 (2)求﹛an﹜的通项公式
展开
1个回答
展开全部
(1)下文[
]表示下角标∵a[n+1]=(n+2)/nSn
∴Sn=na[n+1]/(n+2)
S[n-1]=(n-1)an/(n+1)
∴an=Sn-S[n-1]=na[n+1]/(n+2)-(n-1)an/(n+1)即2n×an/(n+1)
=
na[n+1]/(n+2)
∵n≠0,可同消n.即2an/(n+1)
=
a[n+1]/(n+2)
即2S[n-1]/(n-1)=Sn/n
(n≥2)即Sn/n∶S[n-1]/(n-1)=1/2=q
∴数列{Sn/n}是等比数列.Sn/n=S1/1×(1/2)ˆ(n-1)
(n≥2)
n=1时.S1/1=a1/1=1
满足Sn/n=S1/1×(1/2)ˆ(n-1)
∴{Sn/n}是为首项为1.公比为1/2的等比数列(2)由(1)已证得S[n-1]/(n-1)
∶S[n-2]/(n-2)=1/2即an/(n+1)
∶a[n-1]/n
=1/2即an/a[n-1]=(n+1)/2n同理a[n-1]/a[n-2]=n/(2(n-1))=1/2×n/(n-1)a[n-2]/a[n-3]=(n-1)/(2(n-2))=1/2×(n-1)/(n-2)a[n-3]/a[n-4]=(n-2)/(2(n-3))=1/2×(n-2)/(n-3)a[n-4]/a[n-3]=(n-3)/(2(n-4))=1/2×(n-3)/(n-4).a₃/a₂=4/6=1/2×4/3a₂/a₁=3/4上述式子左右叠乘得an/a₁=an=n×(1/2)ˆ(n-1)
]表示下角标∵a[n+1]=(n+2)/nSn
∴Sn=na[n+1]/(n+2)
S[n-1]=(n-1)an/(n+1)
∴an=Sn-S[n-1]=na[n+1]/(n+2)-(n-1)an/(n+1)即2n×an/(n+1)
=
na[n+1]/(n+2)
∵n≠0,可同消n.即2an/(n+1)
=
a[n+1]/(n+2)
即2S[n-1]/(n-1)=Sn/n
(n≥2)即Sn/n∶S[n-1]/(n-1)=1/2=q
∴数列{Sn/n}是等比数列.Sn/n=S1/1×(1/2)ˆ(n-1)
(n≥2)
n=1时.S1/1=a1/1=1
满足Sn/n=S1/1×(1/2)ˆ(n-1)
∴{Sn/n}是为首项为1.公比为1/2的等比数列(2)由(1)已证得S[n-1]/(n-1)
∶S[n-2]/(n-2)=1/2即an/(n+1)
∶a[n-1]/n
=1/2即an/a[n-1]=(n+1)/2n同理a[n-1]/a[n-2]=n/(2(n-1))=1/2×n/(n-1)a[n-2]/a[n-3]=(n-1)/(2(n-2))=1/2×(n-1)/(n-2)a[n-3]/a[n-4]=(n-2)/(2(n-3))=1/2×(n-2)/(n-3)a[n-4]/a[n-3]=(n-3)/(2(n-4))=1/2×(n-3)/(n-4).a₃/a₂=4/6=1/2×4/3a₂/a₁=3/4上述式子左右叠乘得an/a₁=an=n×(1/2)ˆ(n-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询