多元一次不定方程的解法
1个回答
展开全部
多元一次不定方程的解法:
n元一次不定方程就是形如∑aixi = C的不定方程,与二元一次方程最大的区别是,系数增多,未知数增多。求取变得更复杂。但事实上,多元一次方程可以通过消元法来变换成已经完美解决的二元一次方程。
举例: 3x+4y+6z = 7,为了将3元变2元,这里我们做一个假设,设4y+6z=w,由不定方程的性质可知 2 | w,即w是2的倍数,由此我们不妨假设4y+6z=2w,将2w回代到方程中即得3x+2w=7。解此不定方程得x = 1 , w = 2。再将w = 2 回代得到4y+6z=4,解此不定方程,得y = 2, z = 2,自此满足方程的一组特解为(1 , -2 , 2)。
使用消元法可以很轻松地求得一组满足方程的特解,通解就没有那么容易了。
还是刚才的例子,我们知道X = 1 + 2n,w = 2 - 3n 是 3x + 2w = 7的通解。
把w = 2 - 3n 代入到 4y + 6z = 2w(1) 中,得 4y + 6z = 4 - 6n 。我们知道 4 y + 6 z = 2 (2)的特解为 y'0 = -1 ,z'0 = 1。由于(2)式两边乘以 w即得(1),所以y0 = -w ,z0 = w,
由特解马上可以得到通解
y = - 2 + 3n + 3n' , z = 2 - 3n - 2n'
所以此不定方程的通解为 X = 1 + 2n , y = - 2 + 3n + 3n' , Z = 2 - 3n - 2n' , n , n'为任意整数。由此可见,此不定方程的通解可以通过取向量N = (n,n')不同的值来得到。
不失一般性地,可以通过上述的办法构造成一个形如Xn = ∑λiti + q 的通项式。(相关的结论请参看相关的论文这里不再赘述)
n元一次不定方程就是形如∑aixi = C的不定方程,与二元一次方程最大的区别是,系数增多,未知数增多。求取变得更复杂。但事实上,多元一次方程可以通过消元法来变换成已经完美解决的二元一次方程。
举例: 3x+4y+6z = 7,为了将3元变2元,这里我们做一个假设,设4y+6z=w,由不定方程的性质可知 2 | w,即w是2的倍数,由此我们不妨假设4y+6z=2w,将2w回代到方程中即得3x+2w=7。解此不定方程得x = 1 , w = 2。再将w = 2 回代得到4y+6z=4,解此不定方程,得y = 2, z = 2,自此满足方程的一组特解为(1 , -2 , 2)。
使用消元法可以很轻松地求得一组满足方程的特解,通解就没有那么容易了。
还是刚才的例子,我们知道X = 1 + 2n,w = 2 - 3n 是 3x + 2w = 7的通解。
把w = 2 - 3n 代入到 4y + 6z = 2w(1) 中,得 4y + 6z = 4 - 6n 。我们知道 4 y + 6 z = 2 (2)的特解为 y'0 = -1 ,z'0 = 1。由于(2)式两边乘以 w即得(1),所以y0 = -w ,z0 = w,
由特解马上可以得到通解
y = - 2 + 3n + 3n' , z = 2 - 3n - 2n'
所以此不定方程的通解为 X = 1 + 2n , y = - 2 + 3n + 3n' , Z = 2 - 3n - 2n' , n , n'为任意整数。由此可见,此不定方程的通解可以通过取向量N = (n,n')不同的值来得到。
不失一般性地,可以通过上述的办法构造成一个形如Xn = ∑λiti + q 的通项式。(相关的结论请参看相关的论文这里不再赘述)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询