初一数学的有理数定义
3个回答
展开全部
有理数可分为整数和分数。任何一个有理数都可以写成分数m/n(m,n都是整数,且n≠0)的形式。任何一个有理数都可以在数轴上表示。其中包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。这一定义在数的十进制和其他进位制(如二进制)下都适用。数学上,有理数是一个整数 a 和一个非零整数 b 的比(ratio),通常写作 a/b,故又称作分数。希腊文称为 λογο,原意为“成比例的数”(rational number),但中文翻译不恰当,逐渐变成“有道理的数”。 无限不循环小数称之为无理数(例如:圆周率π)有理数和无理数统称为实数。所有有理数的集合表示为Q。以下都是有理数:
(1) 整数包含了:正整数、0、负整数统称为整数。
(2)分数包含了:正分数、负分数统称为分数。
(3)小数包含了:有限小数、无限循环小数。而且分数也统称小数,因为分小互化。
(1) 整数包含了:正整数、0、负整数统称为整数。
(2)分数包含了:正分数、负分数统称为分数。
(3)小数包含了:有限小数、无限循环小数。而且分数也统称小数,因为分小互化。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询