高二数学 y=X²+5/根号(X²+4)的最小值

最后用f(x)=t+1/t(≥2)单调性求解为什么要(≥2)... 最后用f(x)= t+1/t (≥2)单调性求解 为什么要(≥2) 展开
tangmei1001
2012-11-11 · TA获得超过9789个赞
知道大有可为答主
回答量:4347
采纳率:80%
帮助的人:3753万
展开全部
y=(x²+5)/√(x²+5)=[(x²+4)+1]/√(x²+4)=√(x²+4)+1/√(x²+4),
设t=√(x²+4),则y=t+1/t,∵x²+4≥4,∴t≥2,
y'=1-1/t²=(t²-1)/t²,当t≥2时,y'>0,
故函数y在[2,+∞)上单调递增,
∴当t=2,即x=0时,y有最小值5/2。
追问
在第二行的,∵x²+4≥4,这个是?
追答
不论x是任何实数,都有x²≥0,所以x²+4≥4。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式