设z(x,y)是方程F(x-y,y-z,z-x)=0所确定,其中F为可微函数,则δz/δx+δz/δy=?

 我来答
衡然召怀绿
2019-06-27 · TA获得超过1107个赞
知道小有建树答主
回答量:1923
采纳率:100%
帮助的人:9.3万
展开全部
令u=x-y,v=y-z,w=z-x,则F(u,v,w)=0,方程两边对x求偏导,其中z看做x,y的函数,则
ðF/ðu*ðu/ðx+ðF/ðv*ðv/ðx+ðF/ðw*ðw/ðx=F'1+F'2*(-ðz/ðx)+F'3*(ðz/ðx-1)=0,ðz/ðx=(F'3-F'1)/(F'3-F'2),同理ðz/ðy=(F'1-F'2)/(F'3-F'2),所以ðz/ðx+ðz/ðy=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式