数学题,求解答!
1.cos4x在x=0处的带皮亚诺余项展开
cos4x=1–8x²+o(x²)
lim(x–>0) (cos4x)^(1/x²)
=lim(x–>0) [(1–8x²)^(1/(–8x²))]^(–8)
=e^(–8)
2.f(x)=x²/2+5x–6lnx
f'(x)=x+5–6/x=(x²+5x–6)/x<0
0<x<1
所以f(x)在(0,1)上单调递减
3.f(x)=2x^4–3x²+20x+5
f'(x)=8x³–6x+20
f''(x)=24x²–6<0
x∈(–1/2,1/2)
4.设距原点最近的点为A(a,20–3a)
kOA=(20–3a)/a=1/3
a=6
所以距离原点最近的点为(6,2)
5.设BP=x,则AP=15–x
tanθ=–tan(∠BPC+∠APD)
=–(tan∠BPC+tan∠APD)/(1–tan∠BPC·tan∠APD)
=–[1/x+9/(15–x)]/[1–1/x ·9/(15–x)]
=(8x+15)/(x²–15x+9)
=(8x+15)/[(8x+15)²/64–75/32 (8x+15)+2601/64]
=1/[(8x+15)/64+2601/[64(8x+15)]–75/32]
(8x+15)/64+2601/[64(8x+15)]∈[51/32,471/160)
tanθ∈(–∞,–4/3]∪(5/3,+∞)
θ∈(arctan(5/3),arctan(–4/3)]
当(8x+15)/64=2601/[64(8x+15)]时,即8x+15=51,x=9/2时,θ取得最大值
此时AP=15–x=15–9/2=10.5
6.减速加速度为a
0=80–at
s=80t–1/2 at²
=80²/a–1/2 a·80²/a²
=3200/a≤160×10^(–3) km
a≥20000km/h²
减速加速度至少要20000km/h²才能避免连环碰撞。
7.g'(θ)=7cosθ–3sinθ
两边积分得g(θ)=7sinθ+3cosθ+C
g(0)=3+C=6
C=3
所以g(θ)=7sinθ+3cosθ+3
g(π)=7·0+3·(–1)+3=0