设向量组线性相关,证明向量组也线性相关

证明向量组线性相关设向量组.,a1,a2,a3,线性相关,并设b1=a1+a2,b2=a1-2a2,b3=a1+a2+a3证明:向量组,b1.b2.b3,线性相关... 证明向量组线性相关
设向量组.,a1,a2,a3 ,线性相关,并设b1=a1+a2,b2=a1-2a2,b3=a1+a2+a3
证明:向量组,b1.b2.b3,线性相关
展开
 我来答
纪荷邢访冬
2020-03-05 · TA获得超过1204个赞
知道小有建树答主
回答量:1881
采纳率:100%
帮助的人:9.2万
展开全部
方法一:b1-b2+b3=0,所以向量组B线性相关
方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=
1 2 1
-3 1 4
-1 0 1
|C|=0,所以秩(B)≤秩(C)<3,所以向量组B线性相关
以上回答你满意么?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式