若函数f(x)=根号3sin(x+fai)-cos(x+fai)(0<fai<π)为奇函数,则fai=?
2012-11-11 · 知道合伙人教育行家
关注
展开全部
解:
f(x)=√3sin(x+fai)-cos(x+fai)
=2(√3/2sin(x+fai)-1/2cos(x+fai))
=2(cosπ/6sin(x+fai)-sinπ/6cos(x+fai))
=2sin(x+fai-π/6)
f(x)为奇函数
则f(-x)=2sin(-x+fai-π/6)
=-2sin(x-fai+π/6)
=-f(x)
=-2sin(x+fai-π/6)
x-fai+π/6=x+fai-π/6+2kπ
fai=π/6-2kπ
0<fai<π
fai=π/6
数学辅导团为您解答,不理解请追问,理解请及时采纳!(*^__^*)
f(x)=√3sin(x+fai)-cos(x+fai)
=2(√3/2sin(x+fai)-1/2cos(x+fai))
=2(cosπ/6sin(x+fai)-sinπ/6cos(x+fai))
=2sin(x+fai-π/6)
f(x)为奇函数
则f(-x)=2sin(-x+fai-π/6)
=-2sin(x-fai+π/6)
=-f(x)
=-2sin(x+fai-π/6)
x-fai+π/6=x+fai-π/6+2kπ
fai=π/6-2kπ
0<fai<π
fai=π/6
数学辅导团为您解答,不理解请追问,理解请及时采纳!(*^__^*)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询