(2012?安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设

(2012?安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给... (2012?安徽)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,则S4=2S2;④若S1=S2,则P点在矩形的对角线上.其中正确的结论的序号是______(把所有正确结论的序号都填在横线上). 展开
 我来答
邀月对影4633
推荐于2016-06-28 · TA获得超过537个赞
知道答主
回答量:119
采纳率:0%
帮助的人:131万
展开全部
解:如右图,过点P分别作PF⊥AD于点F,PE⊥AB于点E,
∵△APD以AD为底边,△PBC以BC为底边,
∴此时两三角形的高的和为AB,即可得出S1+S3=
1
2
矩形ABCD面积;
同理可得出S2+S4=
1
2
矩形ABCD面积;
∴S2+S4=S1+S3(故②正确);
当点P在矩形的两条对角线的交点时,S1+S2=S3+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立.(故①不一定正确);
③若S3=2S1,只能得出△APD与△PBC高度之比,S4不一定等于2S2;(故③错误);
④若S1=S2
1
2
×PF×AD=
1
2
PE×AB,
∴△APD与△PBA高度之比为:
PF
PE
=
AB
AD

∵∠DAE=∠PEA=∠PFA=90°,
∴四边形AEPF是矩形,
∴此时矩形AEPF与矩形ABCD相似,
PF
CD
=
PE
BC

∴P点在矩形的对角线上.(故④选项正确)
故答案为:②和④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式