高数问题,,,为什么an有界但是不收敛 收敛和有界有什么区别吗 题目如图 拜托大神
2015-01-12
展开全部
收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。
有界函数:对于定义域中的任意一个值,相应的函数值都在一个区间内变化(也就是函数值的绝对值总小于某一个固定值),那函数就是有界的。
收敛函数一定有界(上下界分别就是函数的最大和最小值)
但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2
有界函数:对于定义域中的任意一个值,相应的函数值都在一个区间内变化(也就是函数值的绝对值总小于某一个固定值),那函数就是有界的。
收敛函数一定有界(上下界分别就是函数的最大和最小值)
但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询