集合A的元素由ax2-3x+2=0的解构成,若A中元素至多有一个,求实数a的取值范围

集合A的元素由ax2-3x+2=0的解构成,若A中元素至多有一个,求实数a的取值范围.... 集合A的元素由ax2-3x+2=0的解构成,若A中元素至多有一个,求实数a的取值范围. 展开
 我来答
红莲总受566
2015-01-28 · TA获得超过133个赞
知道答主
回答量:112
采纳率:0%
帮助的人:128万
展开全部
∵集合A={x|ax2-3x+2=0}至多有一个元素,
分类讨论:
①当a=0时,A={x|-3x+2=0}只有一个元素,符合题意;
②当a≠0时,要A={x|ax2-3x+2=0}至多有一个元素,
则必须方程:ax2-3x+2=0有两个相等的实数根或没有实数根,
∴△≤0,得:9-8a≤0,∴a≥
9
8

综上所述,实数a的取值范围:a≥
9
8
或a=0.
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式