1个回答
展开全部
解:∵微分方程为(a²-x²)y'+xy=a²
∴设f(x),有[f(x)(a²-x²)]'=xf(x),
f'(x)(a²-x²)+f(x)(-2x)=xf(x),
f'(x)(a²-x²)=3xf(x),df(x)/f(x)=
3xdx/(a²-x²),可得:
ln|f(x)|=-1.5ln|a²-x²|,f(x)=
(a²-x²)^(-1.5)
∴有[y(a²-x²)^(-0.5)]'=a²(a²-x²)^(-1.5)
y/√(a²-x²)=1/√(a²-x²)+
x²(a²-x²)^(-1.5)+c,方程的通解为
y=1+x²/(a²-x²)+c√(a²-x²)
(c为任意常数)
∴设f(x),有[f(x)(a²-x²)]'=xf(x),
f'(x)(a²-x²)+f(x)(-2x)=xf(x),
f'(x)(a²-x²)=3xf(x),df(x)/f(x)=
3xdx/(a²-x²),可得:
ln|f(x)|=-1.5ln|a²-x²|,f(x)=
(a²-x²)^(-1.5)
∴有[y(a²-x²)^(-0.5)]'=a²(a²-x²)^(-1.5)
y/√(a²-x²)=1/√(a²-x²)+
x²(a²-x²)^(-1.5)+c,方程的通解为
y=1+x²/(a²-x²)+c√(a²-x²)
(c为任意常数)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询