如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.

如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2... 如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.
展开
韩增民松
2012-11-12 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2756万
展开全部
如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.
(1)求EG的长;
(2)求证:CF=AB+AF.

(1)解析:∵在△DBC中,BD⊥CD,∠DCB=45°,DC=2
∴∠DBC=45°,BD=CD=2,BC=√(DB^2+CD^2)= 2√2,
∵CE⊥BE,点G为BC的中点,
∴EG=1/2BC=√2.
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,
∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,
∵DB=CD,BA=CH,∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,∵AD∥BC,
∴∠ADB=∠DBC=45°,∴∠HDC=45°,∠HDB=∠BDC-∠HDC=45°,
∴∠ADB=∠HDB,∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
GamryRaman
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电... 点击进入详情页
本回答由GamryRaman提供
郭敦顒
2012-11-12 · 知道合伙人教育行家
郭敦顒
知道合伙人教育行家
采纳数:7343 获赞数:32732
部队通令嘉奖,功臣单位代表,铁道部奖。

向TA提问 私信TA
展开全部
郭敦顒回答:
(1)∵梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.GD
∴B、C、D、E四点共圆,G为圆心,R为半径,
∴GB=GE=GD=GC=R,

A D

E
F

B C
G
∴∠GBD=∠GDC=∠DCB=45°,DG⊥BC,GC²=2²/2
∴GC=√2
∴EG=√2
(2)求证:CF=AB+AF.证明后再行回答。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
sp995995
2012-11-12 · TA获得超过1.7万个赞
知道大有可为答主
回答量:6587
采纳率:84%
帮助的人:2206万
展开全部
(1)解:∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= DB2+CD2 =2 2 ,
∵CE⊥BE,点G为BC的中点,
∴EG=1 2 BC= 2 .
答:EG的长是 2 .
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)证明:延长BA与CD延长线交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵△BCD中∠DCB=45°,BD⊥CD,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵AD∥BC,∠ADF=∠DBC=45°∠BDM=90°,
∴∠ADM=∠ADF=45°,
∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友aa96858
2012-11-12 · TA获得超过8429个赞
知道大有可为答主
回答量:2888
采纳率:0%
帮助的人:2342万
展开全部
(1)点G为BC中点,易知EG是RT△BEC斜边BC中线,DG是RT△BDC斜边BC中线
EG=DG
DG=1/2BC=1/2*2√2=
EG=DG=√2
(2)证明:连接DG,DG交CE于M,连接BM,易知RT△BDC是等腰直角三角形
G为BC中点,所以DG 是BC垂直平分线,三线合一,∠BDG=45°
BM=MC,∠DBM=∠DCM
在RT△EBF和RT△DCF中,∠EFB=∠DFC(对顶角)
∠EBF=∠DCM,∠DBM=∠DCM
∠EBF=∠DBM又因∠ADB=∠BDG=45°,DB=BD
△ABD≌△DBG(ASA)
AB=BM,AD=DM
又 AD=DM,∠ADB=∠BDG=45°,DF=FD
△ADF≌△DFM(SAS)
AF=MF
CF=MC+MF,MC=BM=ABAF=MF
CF=AB+AF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
守护oO胧茶
2013-03-19 · TA获得超过485个赞
知道答主
回答量:93
采纳率:0%
帮助的人:60.2万
展开全部
(1)解:∵BD⊥CD,∠DCB=45°,
∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC=
DB的平方+CD的平方=2倍根号2,
∵CE⊥BE,
∠BEC=90°,
∵点G为BC的中点,
∴EG= 1/2BC=根号2
(直角三角形斜边上中线的性质).
答:EG的长是根号2。
(2)证明:在线段CF上截取CH=BA,连接DH,
∵BD⊥CD,BE⊥CE,
∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,
∵∠EFB=∠DFC,
∴∠EBF=∠DCF,
∵DB=CD,BA=CH,
∴△ABD≌△HCD,
∴AD=DH,∠ADB=∠HDC,
∵AD∥BC,
∴∠ADB=∠DBC=45°,
∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,
∴∠ADB=∠HDB,
∵AD=HD,DF=DF,
∴△ADF≌△HDF,
∴AF=HF,
∴CF=CH+HF=AB+AF,
∴CF=AB+AF.
(解法二)证明:延长BA与CD延长线交于M,
∵△BFE和△CFD中,
∠BEF=∠CDF=90°,∠BFE=∠CFD,
∴∠MBD=∠FCD,
∵△BCD中∠DCB=45°,BD⊥CD,
∴BD=CD,
△BMD和△CFD中,
∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,
∴△BMD≌△CFD,
∴CF=BM=AB+AM,DM=DF,
∵AD∥BC,∠ADF=∠DBC=45°∠BDM=90°,
∴∠ADM=∠ADF=45°,
在△AFD和△AMD中
∵ DM=DF;∠ADM=∠ADF;AD=AD,
∴△AFD≌△AMD,
∴AM=AF,
∴CF=BM=AB+AM=AB+AF,即CF=AB+AF

如果觉得有帮助的话,请采纳哦~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
214184009
2013-01-19 · TA获得超过1928个赞
知道答主
回答量:395
采纳率:0%
帮助的人:203万
展开全部
1)解:∵BD⊥CD,∠DCB=45°,∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= DB2+CD2 =2 2 ,∵CE⊥BE,点G为BC的中点,∴EG=1 2 BC= 2 .答:EG的长是 2 .(2)证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,∴∠EBF=∠DCF,∵DB=CD,BA=CH,∴△ABD≌△HCD,∴AD=DH,∠ADB=∠HDC,∵AD∥BC,∴∠ADB=∠DBC=45°,∴∠HDC=45°,∴∠HDB=∠BDC-∠HDC=45°,∴∠ADB=∠HDB,∵AD=HD,DF=DF,∴△ADF≌△HDF,∴AF=HF,∴CF=CH+HF=AB+AF,∴CF=AB+AF.(解法二)证明:延长BA与CD延长线交于M,∵△BFE和△CFD中,∠BEF=∠CDF=90°,∠BFE=∠CFD,∴∠MBD=∠FCD,∵△BCD中∠DCB=45°,BD⊥CD,∴BD=CD,△BMD和△CFD中,∵BD=CD,∠BDM=∠CDF=90°,∠MBD=∠FCD,∴△BMD≌△CFD,∴CF=BM=AB+AM,DM=DF,∵AD∥BC,∠ADF=∠DBC=45°∠BDM=90°,∴∠ADM=∠ADF=45°,∴△AFD≌△AMD,∴AM=AF,∴CF=BM=AB+AM=AB+AF,即CF=AB+AF.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式