“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-α|≤2ε”是数列{xn}收敛于α的(
“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-α|≤2ε”是数列{xn}收敛于α的()A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要...
“对任意给定的ε∈(0,1),总存在正整数N,当n≥N时,恒有|xn-α|≤2ε”是数列{xn}收敛于α的( )A.充分条件但非必要条件B.必要条件但非充分条件C.充分必要条件D.既非充分条件又非必要条件
展开
1个回答
展开全部
先给出结论“对任意给定的?∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2?”是“数列{xn}收敛于a”的充分必要条件;下面给出证明过程.
充分性证明:
已知对任意给定的?∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2?,
则对任意0<?1<1,取?=
1 |
3 |
2 |
3 |
则满足对任意?1>0,总存在正整数N1,当n≥N1时,恒有|xn-a|<?1
即数列{xn}收敛于a
必要性证明:
已知数列{xn}收敛于a,等价于:对任意?1>0,总存在正整数N1,当n≥N1时,恒有|xn-a|<?1
显然通过放缩:就能得证对任意给定的?∈(0,1),总存在正整数N,当n≥N时,恒有|xn-a|≤2?
故选:C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询