1个回答
展开全部
p≠0 时,I =∫<0→+∞>te^(-pt)dt = -(1/p)∫<0→+∞>tde^(-pt)
= -(1/p){te^(-pt)]<0→+∞> -∫<0→+∞>e^(-pt)dt]
= -(1/p){[te^(-pt)]<0→+∞> +(1/p)[e^(-pt)]<0→+∞>}
lim<t→+∞>te^(-pt) = lim<t→+∞>t/e^(pt)
= lim<t→+∞>1/[pe^(pt)] = 0
则 I = -(1/p^2)[e^(-pt)]<0→+∞> = 1/p^2
= -(1/p){te^(-pt)]<0→+∞> -∫<0→+∞>e^(-pt)dt]
= -(1/p){[te^(-pt)]<0→+∞> +(1/p)[e^(-pt)]<0→+∞>}
lim<t→+∞>te^(-pt) = lim<t→+∞>t/e^(pt)
= lim<t→+∞>1/[pe^(pt)] = 0
则 I = -(1/p^2)[e^(-pt)]<0→+∞> = 1/p^2
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询