如图,在平面直角坐标系中,A,B两点的坐标分别为A(-2,0),B(8,0),以AB为直径的半圆与y轴交于点M, 30
以AB一边作正方形ABCD。(3)在x轴上是否存在一点Q,使得三角形QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由:前两题已算出:C(8,10),M(0,...
以AB一边作正方形ABCD。(3)在x轴上是否存在一点Q,使得三角形QMC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由:前两题已算出:C(8,10),M(0,4),CM与圆P相切,只求点Q!急!!!
展开
2个回答
展开全部
很简单啊, CM 是固定值, 只需要 CQ + QM 最小就行了
在 y 轴负半轴上, 存在一点 M', 满足 OM = OM';
连接 CM' , CM' 与 x 相交于 Q, 显然此事 CQ + QM' = CQ+ QM = CM' 最小
显然, 圆心 P (3, 0), 半径 5, PM^2 = PO^2 + OM^2, OM = 4
M' ( 0, -4), C (8, 10)
CM' 方程 y = 14/8 x - 4, 当 y = 0 时, x = 32/14 = 16/7
Q 坐标为 (16/7, 0)
在 y 轴负半轴上, 存在一点 M', 满足 OM = OM';
连接 CM' , CM' 与 x 相交于 Q, 显然此事 CQ + QM' = CQ+ QM = CM' 最小
显然, 圆心 P (3, 0), 半径 5, PM^2 = PO^2 + OM^2, OM = 4
M' ( 0, -4), C (8, 10)
CM' 方程 y = 14/8 x - 4, 当 y = 0 时, x = 32/14 = 16/7
Q 坐标为 (16/7, 0)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询