高一数学题:求高人详解!
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a^2-2a-2)<3的解。...
已知函数f(x)对任意实数x,y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a^2-2a-2)<3的解。
展开
5个回答
展开全部
解:解抽象函数的不等式,需知函数的单调性;
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1)
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1)
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
展开全部
f(a^2-2a-2)=f((a-1)^2-3)=f((a-1)^2)+f(3)=f((a-1)^2)+5<3
f((a-1)^2)<-2
f((a-1)^2)>2
又当x>0时,f(x)>2
所以(a-1)^2>0
所以a<1或a>1
f((a-1)^2)<-2
f((a-1)^2)>2
又当x>0时,f(x)>2
所以(a-1)^2>0
所以a<1或a>1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可设f(x)=kx+b,根据条件求出k、b,再解不等式.
解:解抽象函数的不等式,需知函数的单调性;
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1)
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
求采纳~
解:解抽象函数的不等式,需知函数的单调性;
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1)
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
求采纳~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-11-12
展开全部
不知道
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询