2个回答
展开全部
(x+y+z)^2=x^2+y^2+z^2+2(xy+yz+zx)=0,因为x^2+y^2+z^2=1,所以xy+yz+zx=-1/2;
(xy+yz+zx)^2=1/4=(xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z),所以(xy)^2+(yz)^2+(zx)^2=1/4;
(x^2+y^2+z^2)^2=1=x^4+y^4+z^4+2[(xy)^2+(yz)^2+(zx)^2],所以x^4+y^4+z^4=1/2。
(xy+yz+zx)^2=1/4=(xy)^2+(yz)^2+(zx)^2+2xyz(x+y+z),所以(xy)^2+(yz)^2+(zx)^2=1/4;
(x^2+y^2+z^2)^2=1=x^4+y^4+z^4+2[(xy)^2+(yz)^2+(zx)^2],所以x^4+y^4+z^4=1/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-11-12
展开全部
(x+y+z)^2=[(x+y)+z]^2
=(x^2+2xy+y^2)+z^2+2zx+2zy
=x^2+y^2+z^2+2xy+2xz+2yz
=x^2+y^2+z^2+2(xy+xz+yz)=0
x+y+z=0
xy + xz+yz= -1/2
(xy+xz+yz)^2
=x^2y^2+x^2z^2+y^2z^2+2xzy^2+2yzx^2+2xyz^2
=x^2y^2+x^2z^2+y^2z^2 +2xyz(x+y+z)
=1/4
x^2y^2+x^2z^2+y^2z^2=1/4
(x^2+y^2+z^2)^2
=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2=1
x^4+y^4+z^4= 1/2
=(x^2+2xy+y^2)+z^2+2zx+2zy
=x^2+y^2+z^2+2xy+2xz+2yz
=x^2+y^2+z^2+2(xy+xz+yz)=0
x+y+z=0
xy + xz+yz= -1/2
(xy+xz+yz)^2
=x^2y^2+x^2z^2+y^2z^2+2xzy^2+2yzx^2+2xyz^2
=x^2y^2+x^2z^2+y^2z^2 +2xyz(x+y+z)
=1/4
x^2y^2+x^2z^2+y^2z^2=1/4
(x^2+y^2+z^2)^2
=x^4+y^4+z^4+2x^2y^2+2x^2z^2+2y^2z^2=1
x^4+y^4+z^4= 1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询