如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,(见下)
过点H做直线L⊥AO于H,分别交直线AB、AC、BC、于点N、E、M。(1)当直线L经过点C时,证明BN=CD。(2)当M是BC中点时,证明CE和CD之间的等量关系(3)...
过点H做直线L⊥AO于H,分别交直线AB、AC、BC、于点N、E、M。
(1)当直线L经过点C时,证明BN=CD。
(2)当M是BC中点时,证明CE和CD之间的等量关系
(3)BN、CE、CD之间的关系 展开
(1)当直线L经过点C时,证明BN=CD。
(2)当M是BC中点时,证明CE和CD之间的等量关系
(3)BN、CE、CD之间的关系 展开
2个回答
展开全部
1、证明:连接DN
∵AD平分∠BAC
∴∠BAD=∠CAD
∵CN⊥AD
∴∠AHC=∠AHN=90
∵AH=AH
∴△AHC≌△AHN (ASA)
∴AN=AC
∵AD=AD
∴△ADC≌△ADN (SAS)
∴CD=ND,∠ACB=∠AND
∵∠AND=∠B+∠BDN,∠ACB=2∠B
∴∠B=∠BDN
∴BN=ND
∴BN=CD
2、CD=2CE
证明:过点C作CP⊥AD交AB于P,交AD于Q,连接PD
根据(1)的同理证明可得:BP=CD,AP=AC,AN=AE
∴NP=AN-AP,CE=AE-AC
∴PN=CE
∵CP⊥AD,EN⊥AD
∴CP∥EN
∵M是BC的中点
∴MN是△BCP的中位线
∴BP=2PN
∴BP=2CE
∴CD=2CE
3、
BN+CE=CD
∵AD平分∠BAC
∴∠BAD=∠CAD
∵CN⊥AD
∴∠AHC=∠AHN=90
∵AH=AH
∴△AHC≌△AHN (ASA)
∴AN=AC
∵AD=AD
∴△ADC≌△ADN (SAS)
∴CD=ND,∠ACB=∠AND
∵∠AND=∠B+∠BDN,∠ACB=2∠B
∴∠B=∠BDN
∴BN=ND
∴BN=CD
2、CD=2CE
证明:过点C作CP⊥AD交AB于P,交AD于Q,连接PD
根据(1)的同理证明可得:BP=CD,AP=AC,AN=AE
∴NP=AN-AP,CE=AE-AC
∴PN=CE
∵CP⊥AD,EN⊥AD
∴CP∥EN
∵M是BC的中点
∴MN是△BCP的中位线
∴BP=2PN
∴BP=2CE
∴CD=2CE
3、
BN+CE=CD
展开全部
(1)证明:连接ND.
∵AO平分∠BAC,
∴∠1=∠2,
∵直线l⊥AO于H,
∴∠4=∠5=90°,
∴∠6=∠7,
∴AN=AC,
∴NH=CH,
∴AH是线段NC的中垂线,
∴DN=DC,
∴∠8=∠9.
∴∠AND=∠ACB,
∵∠AND=∠B+∠3,∠ACB=2∠B,
∴∠B=∠3,
∴BN=DN.
∴BN=DC;
(2)如图,当M是BC中点时,CE和CD之间的等量关系为CD=2CE.
证明:过点C作CN'⊥AO交AB于N'.
由(1)可得BN'=CD,AN'=AC,AN=AE.
∴∠4=∠3,NN'=CE.
过点C作CG∥AB交直线l于G.
∴∠4=∠2,∠B=∠1.
∴∠2=∠3.
∴CG=CE.
∵M是BC中点,
∴BM=CM.
在△BNM和△CGM中,
∠B=∠1BM=CM∠NMB=∠GMC,
∴△BNM≌△CGM.
∴BN=CG.
∴BN=CE.
∴CD=BN'=NN'+BN=2CE.
(3)BN、CE、CD之间的等量关系:
当点M在线段BC上时,CD=BN+CE;
当点M在BC的延长线上时,CD=BN-CE;
当点M在CB的延长线上时,CD=CE-BN.
∵AO平分∠BAC,
∴∠1=∠2,
∵直线l⊥AO于H,
∴∠4=∠5=90°,
∴∠6=∠7,
∴AN=AC,
∴NH=CH,
∴AH是线段NC的中垂线,
∴DN=DC,
∴∠8=∠9.
∴∠AND=∠ACB,
∵∠AND=∠B+∠3,∠ACB=2∠B,
∴∠B=∠3,
∴BN=DN.
∴BN=DC;
(2)如图,当M是BC中点时,CE和CD之间的等量关系为CD=2CE.
证明:过点C作CN'⊥AO交AB于N'.
由(1)可得BN'=CD,AN'=AC,AN=AE.
∴∠4=∠3,NN'=CE.
过点C作CG∥AB交直线l于G.
∴∠4=∠2,∠B=∠1.
∴∠2=∠3.
∴CG=CE.
∵M是BC中点,
∴BM=CM.
在△BNM和△CGM中,
∠B=∠1BM=CM∠NMB=∠GMC,
∴△BNM≌△CGM.
∴BN=CG.
∴BN=CE.
∴CD=BN'=NN'+BN=2CE.
(3)BN、CE、CD之间的等量关系:
当点M在线段BC上时,CD=BN+CE;
当点M在BC的延长线上时,CD=BN-CE;
当点M在CB的延长线上时,CD=CE-BN.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询