能用Mathematica做什么有趣的事情
1个回答
展开全部
box[x_, x1_, x2_, a_, b_] := Tanh[a (x - x1)] + Tanh[-b (x - x2)];
ex[z_, z0_, s_] := Exp[-(z - z0)^2/s]
r[z_, x_] := (*body*).4 (1.0 - .4 ex[z, .8, .15] +
Sin[2 π x]^2 + .6 ex[z, .8, .25] Cos[2 π x]^2 + .3 Cos[2 π x]) 0.5 (1 + Tanh[4 z]) +
(*legs*)
(1 - .2 ex[z, -1.3, .9]) 0.5 (1 + Tanh[-4 z]) (.5 (1 + Sin[2 π x]^2 +
.3 Cos[2 π x])*((Abs[Sin[2 π x]])^1.3 + .08 (1 + Tanh[4 z]) ) ) +
(*improve butt*)
.13 box[Cos[π x], -.45, .45, 5, 5] box[z, -.5, .2, 4, 2] -
0.1 box[Cos[π x], -.008, .008, 30, 30] box[z, -.4, .25, 8, 6] -
.05 Sin[π x]^16 box[z, -.55, -.35, 8, 18]
ParametricPlot3D[
(*shift butt belly*)
{.1 Exp[-(z-.8)^2/.6] - .18 Exp[-(z -.1)^2/.4], 0, 0} + {r[z, x] Cos[2 π x], r[z, x] Sin[2 π x],z},
{x, 0, 1}, {z, -1.5, 1.5},
PlotPoints -> {150, 50}, Mesh -> None,
AxesLabel -> {"x", "y", "z"}]
ex[z_, z0_, s_] := Exp[-(z - z0)^2/s]
r[z_, x_] := (*body*).4 (1.0 - .4 ex[z, .8, .15] +
Sin[2 π x]^2 + .6 ex[z, .8, .25] Cos[2 π x]^2 + .3 Cos[2 π x]) 0.5 (1 + Tanh[4 z]) +
(*legs*)
(1 - .2 ex[z, -1.3, .9]) 0.5 (1 + Tanh[-4 z]) (.5 (1 + Sin[2 π x]^2 +
.3 Cos[2 π x])*((Abs[Sin[2 π x]])^1.3 + .08 (1 + Tanh[4 z]) ) ) +
(*improve butt*)
.13 box[Cos[π x], -.45, .45, 5, 5] box[z, -.5, .2, 4, 2] -
0.1 box[Cos[π x], -.008, .008, 30, 30] box[z, -.4, .25, 8, 6] -
.05 Sin[π x]^16 box[z, -.55, -.35, 8, 18]
ParametricPlot3D[
(*shift butt belly*)
{.1 Exp[-(z-.8)^2/.6] - .18 Exp[-(z -.1)^2/.4], 0, 0} + {r[z, x] Cos[2 π x], r[z, x] Sin[2 π x],z},
{x, 0, 1}, {z, -1.5, 1.5},
PlotPoints -> {150, 50}, Mesh -> None,
AxesLabel -> {"x", "y", "z"}]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询