已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.(Ⅰ)当b=0时,求实数k
已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.(Ⅰ)当b=0时,求实数k的值;(Ⅱ)当b∈(?12,1)时,求实数...
已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.(Ⅰ)当b=0时,求实数k的值;(Ⅱ)当b∈(?12,1)时,求实数k的取值范围.
展开
1个回答
展开全部
(Ⅰ)当b=0时,点M(0,0)在圆C:(x-1)2+y2=1上,
若足MP⊥MQ,则PQ为圆C:(x-1)2+y2=1直径,
即直线l:y=kx-1过圆心(1,0),
代入解得k=1.
(Ⅱ)设P,Q两点的坐标为(x1,kx1-1),(x2,kx2-1)
则由圆C:(x-1)2+y2=1及直线l:y=kx-1
得(k2+1)x2-2(k+1)x+1=0
则x1?x2=
,x1+x2=
则
=(x1,kx1-1-b),
=(x2,kx2-1-b)
由MP⊥MQ则
x1?x2+(kx1-1-b)?(kx2-1-b)=0
即
=(b+1)+
∵b∈(?
,1)
∴
=(b+1)+
∈[2,
)
解得k≥1
故实数k的取值范围[1,+∞)
若足MP⊥MQ,则PQ为圆C:(x-1)2+y2=1直径,
即直线l:y=kx-1过圆心(1,0),
代入解得k=1.
(Ⅱ)设P,Q两点的坐标为(x1,kx1-1),(x2,kx2-1)
则由圆C:(x-1)2+y2=1及直线l:y=kx-1
得(k2+1)x2-2(k+1)x+1=0
则x1?x2=
1 |
k2+1 |
2(k+1) |
k2+1 |
则
MP |
MQ |
由MP⊥MQ则
x1?x2+(kx1-1-b)?(kx2-1-b)=0
即
2k2+2k |
k2+1 |
1 |
(b+1) |
∵b∈(?
1 |
2 |
∴
2k2+2k |
k2+1 |
1 |
(b+1) |
5 |
2 |
解得k≥1
故实数k的取值范围[1,+∞)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询