为什么矩阵A和A转置一定有相同的特征值?

 我来答
轮看殊O
高粉答主

2021-10-19 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:771万
展开全部

设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B。

矩阵A'经过初等列变换之后,可化为下三角矩阵C,则A'等价于C。

显然,B的转置矩阵B'=C。

因为,转置之后对角线上的元素不变,所以,B和C的对角线元素相等。

因为,三角形行列式的值等于对角线上元素的乘积。

又因为,|λI-A|=|λI-B|=对角线上元素的乘积。

|λI-A'|=|λI-C|=对角线上元素的乘积。

所以,|λI-A|=|λI-A'|。

所以,矩阵A与矩阵A的转置矩阵的特征值相同。

将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。


设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量

式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。

A的对应于特征值λ1=λ2=-2的全部特征向量为x=k1ξ1+k2ξ2(k1,k2不全为零),可见,特征值λ=-2的特征向量空间是二维的。注意,特征值在重根时,特征向量空间的维数是特征根的重数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式