π分之一的原函数
1个回答
展开全部
π分之一的原函数为x/π+C,其中C为常数。
解:求原函数用积分求。
∫1/πdx=x/π+C。
即1/π原函数为x/π+C,其中C为常数。
不定积分的求解方法
(1)换元积分法
例:∫e^(2x)dx=1/2∫e^(2x)d(2x)=1/2*e^(2x)+C
(2)积分公式法
例:∫e^xdx=e^x、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C
(3)分部积分法
例:∫x*e^xdx=∫xd(e^x)=x*e^x-∫e^xdx=x*e^x-e^x=(x-1)*e^x
常用的积分公式
∫(secx)^2dx=tanx+C、∫1/(x^2+x+1)d(x^2+x+1)=ln|x^2+x+1|+C、∫5dx=5x+C
以上内容参考:百度百科-不定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询