为什么做AI的都选Python?
3个回答
展开全部
相对于其他语言:
1、更加人性化的设计
Python的设计更加人性化,具有快速、坚固、可移植性、可扩展性的特点,十分适合人工智能;开源免费,而且学习简单,很容易实现普及;内置强大的库,可以轻松实现更大强大的功能。
2、总体的AI库
AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法;
pyDatalog:Python中的逻辑编程引擎;
SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法,它专注于提供一个易于使用,有良好文档和测试的库;
EasyAI:一个双人AI游戏的python引擎。
3、机器学习库
PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库,它也提供了多种预定义好的环境来测试和比较你的算法;
PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法,它支持Linux和Mac OS X;
scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具,它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包紧密联系在一起的;
MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法,流型学习方法,集中分类,概率方法,数据预处理方法等等。
4、自然语言和文本处理库
NLTK开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析,有windows、Mac OSX和Linux版本。
Python具有丰富而强大的库,能够将其他语言制作的各种模块很轻松的联结在一起,因此,Python编程对人工智能是一门非常有用的语言。可以说人工智能和Python是紧密相连的。如果你想要抓住人工智能的风口,Python是必不可少的助力。
人工智能上使用Python比其他编程语言的好处
1、优质的文档
2、平台无关,可以在现在每一个*nix版本上使用
3、和其他面向对象编程语言比学习更加简单快速
4、Python有许多图像加强库像Python Imaging Libary,VTK和Maya 3D可视化工具包,Numeric Python, Scientific Python和其他很多可用工具可以于数值和科学应用。
5、Python的设计非常好,快速,坚固,可移植,可扩展。很明显这些对于人工智能应用来说都是非常重要的因素。
6、对于科学用途的广泛编程任务都很有用,无论从小的shell脚本还是整个网站应用。
7、它是开源的。可以得到相同的社区支持。
AI的Python库
一、总体的AI库
AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法
pyDatalog:Python中的逻辑编程引擎
SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法。它专注于提供一个易于使用,有良好文档和测试的库。
EasyAI:一个双人AI游戏的python引擎(负极大值,置换表、游戏解决)
二、机器学习库
PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库。它也提供了多种预定义好的环境来测试和比较你的算法。
PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法。它支持Linux和Mac OS X。
scikit-learn 旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具。它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包(numpy,scipy.matplotlib)紧密联系在一起的。
MDP-Toolkit 这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法(主成分分析、独立成分分析、慢特征分析),流型学习方法(局部线性嵌入),集中分类,概率方法(因子分析,RBM),数据预处理方法等等。
1、更加人性化的设计
Python的设计更加人性化,具有快速、坚固、可移植性、可扩展性的特点,十分适合人工智能;开源免费,而且学习简单,很容易实现普及;内置强大的库,可以轻松实现更大强大的功能。
2、总体的AI库
AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法;
pyDatalog:Python中的逻辑编程引擎;
SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法,它专注于提供一个易于使用,有良好文档和测试的库;
EasyAI:一个双人AI游戏的python引擎。
3、机器学习库
PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库,它也提供了多种预定义好的环境来测试和比较你的算法;
PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法,它支持Linux和Mac OS X;
scikit-learn旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具,它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包紧密联系在一起的;
MDP-Toolkit这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法,流型学习方法,集中分类,概率方法,数据预处理方法等等。
4、自然语言和文本处理库
NLTK开源的Python模块,语言学数据和文档,用来研究和开发自然语言处理和文本分析,有windows、Mac OSX和Linux版本。
Python具有丰富而强大的库,能够将其他语言制作的各种模块很轻松的联结在一起,因此,Python编程对人工智能是一门非常有用的语言。可以说人工智能和Python是紧密相连的。如果你想要抓住人工智能的风口,Python是必不可少的助力。
人工智能上使用Python比其他编程语言的好处
1、优质的文档
2、平台无关,可以在现在每一个*nix版本上使用
3、和其他面向对象编程语言比学习更加简单快速
4、Python有许多图像加强库像Python Imaging Libary,VTK和Maya 3D可视化工具包,Numeric Python, Scientific Python和其他很多可用工具可以于数值和科学应用。
5、Python的设计非常好,快速,坚固,可移植,可扩展。很明显这些对于人工智能应用来说都是非常重要的因素。
6、对于科学用途的广泛编程任务都很有用,无论从小的shell脚本还是整个网站应用。
7、它是开源的。可以得到相同的社区支持。
AI的Python库
一、总体的AI库
AIMA:Python实现了从Russell到Norvigs的“人工智能:一种现代的方法”的算法
pyDatalog:Python中的逻辑编程引擎
SimpleAI:Python实现在“人工智能:一种现代的方法”这本书中描述过的人工智能的算法。它专注于提供一个易于使用,有良好文档和测试的库。
EasyAI:一个双人AI游戏的python引擎(负极大值,置换表、游戏解决)
二、机器学习库
PyBrain 一个灵活,简单而有效的针对机器学习任务的算法,它是模块化的Python机器学习库。它也提供了多种预定义好的环境来测试和比较你的算法。
PyML 一个用Python写的双边框架,重点研究SVM和其他内核方法。它支持Linux和Mac OS X。
scikit-learn 旨在提供简单而强大的解决方案,可以在不同的上下文中重用:机器学习作为科学和工程的一个多功能工具。它是python的一个模块,集成了经典的机器学习的算法,这些算法是和python科学包(numpy,scipy.matplotlib)紧密联系在一起的。
MDP-Toolkit 这是一个Python数据处理的框架,可以很容易的进行扩展。它海收集了有监管和没有监管的学习算饭和其他数据处理单元,可以组合成数据处理序列或者更复杂的前馈网络结构。新算法的实现是简单和直观的。可用的算法是在不断的稳定增加的,包括信号处理方法(主成分分析、独立成分分析、慢特征分析),流型学习方法(局部线性嵌入),集中分类,概率方法(因子分析,RBM),数据预处理方法等等。
2021-11-11 · 百度认证:河南新华电脑学院有限公司官方账号
关注
展开全部
1. Python算术运算符 【重点】取模(余)%运算详解——c/c++,java 为取余,而python则为取模。 1、JAVA中 对于整型数a,b来说,取模运算是: 1.求 整数商: c = a/b; 2.计算模: a%b = a - c...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Python作为人工智能首选编程语言,随着人工智能时代的到来,Python开发效率非常高,Python有非常强大的第三方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询