
4个回答
展开全部
a1=1+2分之一=1+1/2
a2=1+2+3分之一=3+1/3
a3=1+2+3+4分之一=6+1/4
......
an=1+2+3+。。。+n分之一=n(n+1)/2+1/(n+1)
这里的n不用≥2
a2=1+2+3分之一=3+1/3
a3=1+2+3+4分之一=6+1/4
......
an=1+2+3+。。。+n分之一=n(n+1)/2+1/(n+1)
这里的n不用≥2
追问
不好意思打错了应该是
(1+2)分之一 ,(1+2+3)分之一(1+2+3+4)分之一等等等 得到它的通项公式为an=(1+2+3+。。。+n)分之一 加个括号 那么n用不用≥2
追答
应该有个a1=1,然后才是
a2=(1+2)分之一=2/[2(2+1)]
a3=(1+2+3)分之一=2/[3(3+1)]
a4=(1+2+3+4)分之一=2/[4(4+1)]
......
an=(1+2+3+......+n)分之一=2/[n(n+1)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=(1+2)分之一
a2=(1+2+3)分之一
a3=(1+2+3+4)分之一
·
·
·
an=[1+2+3+……+(n+1)]分之一 ,(n∈N*)
an=2/[(n+1)(n+2)] , (n∈N*)
你写的那个通项是错的,比如n等于2时,a2=(1+2)分之一,而这实际上是a1
a2=(1+2+3)分之一
a3=(1+2+3+4)分之一
·
·
·
an=[1+2+3+……+(n+1)]分之一 ,(n∈N*)
an=2/[(n+1)(n+2)] , (n∈N*)
你写的那个通项是错的,比如n等于2时,a2=(1+2)分之一,而这实际上是a1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a1=1+2分之一=1+1/2
a2=1+2+3分之一=3+1/3
a3=1+2+3+4分之一=6+1/4
......
an=1+2+3+。。。+n分之一=n(n+1)/2+1/(n+1)
a2=1+2+3分之一=3+1/3
a3=1+2+3+4分之一=6+1/4
......
an=1+2+3+。。。+n分之一=n(n+1)/2+1/(n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1+2+3+4+....+n+n+1=(n+1)(1+n+1)/2=(n+1)(n+2)/2 an=1/((n+1)(n+2)/2)=2/(n+1)(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |