在等比数列{an}中,已知Sn=48,S2n=60,求S3n
展开全部
你好!解法1:
∵
{an}为等比数列,
∴
Sn,
S2n-Sn,
S3n-S2n成等比数列,即(S2n-Sn)??=Sn·(S3n-S2n)
∵
Sn=48,
S2n=60,
∴
(60-48)??=48(S3n-60),解得S3n=63
解法2:
取特殊值,令n=1由题意可得:
S1=48,S2-S1=12,
∴
(S3-60)·48=122,
得S3=63
解法3:
Sn=a1(1-q^n)/(1-q)=48
S2n=a1(1-q^2n)/(1-q)=a1(1-q^n)(1+q^n)/(1-q)=60
所以S2n/Sn=1+q^n=5/4,得q^n=1/5
所以S3n=a1(1-q^3n)/(1-q)
=a1(1-q^n)(1+q^n+q^2n)/(1-q)
=[a1(1-q^n)/(1-q)](1+q^n+q^2n)
=48(1+1/4+1/16)=63
∵
{an}为等比数列,
∴
Sn,
S2n-Sn,
S3n-S2n成等比数列,即(S2n-Sn)??=Sn·(S3n-S2n)
∵
Sn=48,
S2n=60,
∴
(60-48)??=48(S3n-60),解得S3n=63
解法2:
取特殊值,令n=1由题意可得:
S1=48,S2-S1=12,
∴
(S3-60)·48=122,
得S3=63
解法3:
Sn=a1(1-q^n)/(1-q)=48
S2n=a1(1-q^2n)/(1-q)=a1(1-q^n)(1+q^n)/(1-q)=60
所以S2n/Sn=1+q^n=5/4,得q^n=1/5
所以S3n=a1(1-q^3n)/(1-q)
=a1(1-q^n)(1+q^n+q^2n)/(1-q)
=[a1(1-q^n)/(1-q)](1+q^n+q^2n)
=48(1+1/4+1/16)=63
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
63
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询