幂级数和函数的求法与步骤

 我来答
银劫估1
2020-04-11 · TA获得超过238个赞
知道答主
回答量:160
采纳率:100%
帮助的人:68.9万
展开全部

常用函数展开成的幂级数,如e的x次方,1/1+x,sinx,cosx等,将要求的幂级数向熟悉的几个形式转换,一般答案是几个常用和函数的变形或组合。(注意n从几开始取值,少了哪几项,巧妙变换n的初始值,运用等比数列的求和公式等等)。

x^2n/2^n=(x²/2)^n,令x²/2=t,级数求和来就变为Σt^n=1/(1-t),再代回x,就得出图中结果。

这两个级数都用到一个公式:Σx^n=1/(1-x),这里n是从0开始,到∞;当指数为n-1的时候,
n就从1开始。

扩展资料:

幂函数的性质:

一、当α为整数时,α的正负性和奇偶性决定了函数的单调性:

1、当α为正奇数时,图像在定义域为R内单调递专增。

2、当α为正偶数时,图像在定义域为第二象限内单调递减,在第一象限内单调递增。

3、当α为负奇数时,图像在第一三象限各象限内单调递减(但不能说在定义域R内单调递减)。

4、当α为负偶数时,图像在第二象限上单调递增,在第一象限内单调递减。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式