e^tanx-e^x是X的几阶无穷小(X->0)? 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 新科技17 2022-06-20 · TA获得超过5897个赞 知道小有建树答主 回答量:355 采纳率:100% 帮助的人:74.6万 我也去答题访问个人页 关注 展开全部 e^tanx-e^x=e^x×[e^(tanx-x)-1]x→0时,e^(tanx-x)-1等价于tanx-x,设tanx-x是x的k阶无穷小,则lim(x→0) (tanx-x)/x^k存在且非零,由洛必达法则lim(x→0) (tanx-x)/x^k=lim(x→0) (sinx-xcosx)/(cosx×x^k)=li... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: