1,证明当X>0时,e的x次方>1+x 2,证明当X>1时,恒有e的x次方>ex 我来答 1个回答 #热议# 为什么说不要把裤子提到肚脐眼? 舒适还明净的海鸥i 2022-06-08 · TA获得超过1.7万个赞 知道小有建树答主 回答量:380 采纳率:0% 帮助的人:70.5万 我也去答题访问个人页 关注 展开全部 e^x>1+x等价于e^x-1-x>0.设函数f(X)=e^x-1-x,求导可得f'(X)=e^x-x,再求导得f''(x)=e^x-1,在正实数上恒正,所以f‘(x)>f’(0)=0,f(X)>f(0)=0,结论成立 同理,e^x>ex等价于e^x-ex>0,求导可得g'(x)=e^x-e在x>1上恒正,所以e^x-ex>0 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: