国考资料分析解题技巧有哪些
2012-11-15
展开全部
行测资料分析十大速算技巧
技巧一:估算法
\"估算法\"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方式多样,需要各位考生在实战中多加训练与掌握。进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决
定了\"估算\"时候的精度要求。
技巧二:直除法
“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:
一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;
二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:
一、简单直接能看出商的首位;
二、通过动手计算能看出商的首位;
三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
技巧三:截位法
所谓\"截位法\",是指\"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果\"的速算方式。在加法或者减法中使用\"截位法\"时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与借位),直到得到选项要求精度的答案为止。在乘法或者除法中使用\"截位法\"时,为了使所得结果尽可能精确,需要注意截位近似的方向:
一、 扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;
二、 扩大(或缩小)被除数,则需扩大(或缩小)除数。
如果是求\"两个乘积的和或者差(即a×b±c×d)\",应该注意:
三、 扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;
四、 扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。
到底采取哪个近似方向由相近程度和截位后计算难度决定。一般说来,在乘法或者除法中使用\"截位法\"时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方向的要求。所以应用这种方法时,需要考生在做题当中多加熟悉与训练误差的把握,在可以使用其它方式得到答案并且截位误差可能很大时,尽量避免使用乘法与除法的截位法。
技巧四:化同法
要点:所谓\"化同法\",是指\"在比较两个分数大小时,将这两个分数的分子或分母化为相同或相近,从而达到简化计算\"的速算方式。一般包括三个层次:
一、 将分子(或分母)化为完全相同,从而只需要再看分母(或分子)即可;
二、 将分子(或分母)化为相近之后,出现\"某一个分数的分母较大而分子较小\"或\"某一个分数的分母较小而分子较大\"的情况,则可直接判断两个分数的大小。
三、 将分子(或分母)化为非常接近之后,再利用其它速算技巧进行简单判定。
事实上在资料分析试题当中,将分子(或分母)化为完全相同一般是不可能达到的,所以化同法更多的是\"化为相近\"而非\"化为相同\"。
技巧五:差分法
李委明提示:“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。
适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。
“差分法”使用基本准则——
“差分数”代替“大分数”与“小分数”作比较:
1、若差分数比小分数大,则大分数比小分数大;
2、若差分数比小分数小,则大分数比小分数小;
3、若差分数与小分数相等,则大分数与小分数相等。
特别注意:
一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;
二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。
使用“差分法”的时候,牢记将“差分数”写在“大分数”的一侧,因为它代替的是“大分数”,然后再跟“小分数”做比较。
技巧六:插值法
\"插值法\"是指在计算数值或者比较数大小的时候,运用一个中间值进行\"参照比较\"的速算方式,一般情况下包括两种基本形式:
一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。比如说A与B的比较,如果可以找到一个数C,并且容易得到A>C,而B<C,即可以判定A>B。
二、在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以容易的找到A与B之间的一个数C,比如说A<C<B,并且我们可以判断f>C,则我们知道f=B(另外一种情况类比可得)。
技巧七:凑整法
\"凑整法\"是指在计算过程当中,将中间结果凑成一个\"整数\"(整百、整千等其它方便计算形式的数),从而简化计算的速算方式。\"凑整法\"包括加/减法的凑整,也包括乘/除法的凑整。在资料分析的计算当中,真正意义上的完全凑成\"整数\"基本上是不可能的,但由于资料分析不要求绝对的精度,所以凑成与\"整数\"相近的数是资料分析\"凑整法\"所真正包括的主要内容。
技巧八:放缩法
\"放缩法\"是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果进行大胆的\"放\"(扩大)或者\"缩\"(缩小),从而迅速得到待比较数字大小关系的速算方式。
要点:
若A>B>0,且C>D>0,则有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C
这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做题当中经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考场之上容易漏掉的数学关系,其本质可以用\"放缩法\"来解释。
技巧九:增长率相关速算法
李委明提示:计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。
两年混合增长率公式:
如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:
r1+r2+r1× r2
增长率化除为乘近似公式:
如果第二期的值为A,增长率为r,则第一期的值A′:
A′=A/1+r≈A×(1-r)
(实际上左式略大于右式,r越小,则误差越小,误差量级为r2)
平均增长率近似公式:
如果N年间的增长率分别为r1、r2、r3……rn,则平均增长率:
r≈r1+r2+r3+……rn/n
(实际上左式略小于右式,增长率越接近,误差越小)
技巧十:综合速算法
“综合速算法”包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速算方式,但这些速算方式仍然是提高计算速度的有效手段。
平方数速算:
牢记常用平方数,特别是11~30以内数的平方,可以很好地提高计算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900
尾数法速算:
因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时候多强调首位估算,而尾数往往是微不足道的。因此资料分析当中的尾数法只适用于未经近似或者不需要近似的计算之中。历史数据证明,国考试题资料分析基本上不能用到尾数法,但在地方考题的资料分析当中,尾数法仍然可以有效地简化计算。
技巧一:估算法
\"估算法\"毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方式多样,需要各位考生在实战中多加训练与掌握。进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决
定了\"估算\"时候的精度要求。
技巧二:直除法
“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。
“直除法”从题型上一般包括两种形式:
一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;
二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。
“直除法”从难度深浅上来讲一般分为三种梯度:
一、简单直接能看出商的首位;
二、通过动手计算能看出商的首位;
三、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。
技巧三:截位法
所谓\"截位法\",是指\"在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果\"的速算方式。在加法或者减法中使用\"截位法\"时,直接从左边高位开始相加或者相减(同时注意下一位是否需要进位与借位),直到得到选项要求精度的答案为止。在乘法或者除法中使用\"截位法\"时,为了使所得结果尽可能精确,需要注意截位近似的方向:
一、 扩大(或缩小)一个乘数因子,则需缩小(或扩大)另一个乘数因子;
二、 扩大(或缩小)被除数,则需扩大(或缩小)除数。
如果是求\"两个乘积的和或者差(即a×b±c×d)\",应该注意:
三、 扩大(或缩小)加号的一侧,则需缩小(或扩大)加号的另一侧;
四、 扩大(或缩小)减号的一侧,则需扩大(或缩小)减号的另一侧。
到底采取哪个近似方向由相近程度和截位后计算难度决定。一般说来,在乘法或者除法中使用\"截位法\"时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方向的要求。所以应用这种方法时,需要考生在做题当中多加熟悉与训练误差的把握,在可以使用其它方式得到答案并且截位误差可能很大时,尽量避免使用乘法与除法的截位法。
技巧四:化同法
要点:所谓\"化同法\",是指\"在比较两个分数大小时,将这两个分数的分子或分母化为相同或相近,从而达到简化计算\"的速算方式。一般包括三个层次:
一、 将分子(或分母)化为完全相同,从而只需要再看分母(或分子)即可;
二、 将分子(或分母)化为相近之后,出现\"某一个分数的分母较大而分子较小\"或\"某一个分数的分母较小而分子较大\"的情况,则可直接判断两个分数的大小。
三、 将分子(或分母)化为非常接近之后,再利用其它速算技巧进行简单判定。
事实上在资料分析试题当中,将分子(或分母)化为完全相同一般是不可能达到的,所以化同法更多的是\"化为相近\"而非\"化为相同\"。
技巧五:差分法
李委明提示:“差分法”是在比较两个分数大小时,用“直除法”或者“化同法”等其他速算方式难以解决时可以采取的一种速算方式。
适用形式:两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。
基础定义:在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。
“差分法”使用基本准则——
“差分数”代替“大分数”与“小分数”作比较:
1、若差分数比小分数大,则大分数比小分数大;
2、若差分数比小分数小,则大分数比小分数小;
3、若差分数与小分数相等,则大分数与小分数相等。
特别注意:
一、“差分法”本身是一种“精算法”而非“估算法”,得出来的大小关系是精确的关系而非粗略的关系;
二、“差分法”与“化同法”经常联系在一起使用,“化同法紧接差分法”与“差分法紧接化同法”是资料分析速算当中经常遇到的两种情形。
三、“差分法”得到“差分数”与“小分数”做比较的时候,还经常需要用到“直除法”。
四、如果两个分数相隔非常近,我们甚至需要反复运用两次“差分法”,这种情况相对比较复杂,但如果运用熟练,同样可以大幅度简化计算。
使用“差分法”的时候,牢记将“差分数”写在“大分数”的一侧,因为它代替的是“大分数”,然后再跟“小分数”做比较。
技巧六:插值法
\"插值法\"是指在计算数值或者比较数大小的时候,运用一个中间值进行\"参照比较\"的速算方式,一般情况下包括两种基本形式:
一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。比如说A与B的比较,如果可以找到一个数C,并且容易得到A>C,而B<C,即可以判定A>B。
二、在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以容易的找到A与B之间的一个数C,比如说A<C<B,并且我们可以判断f>C,则我们知道f=B(另外一种情况类比可得)。
技巧七:凑整法
\"凑整法\"是指在计算过程当中,将中间结果凑成一个\"整数\"(整百、整千等其它方便计算形式的数),从而简化计算的速算方式。\"凑整法\"包括加/减法的凑整,也包括乘/除法的凑整。在资料分析的计算当中,真正意义上的完全凑成\"整数\"基本上是不可能的,但由于资料分析不要求绝对的精度,所以凑成与\"整数\"相近的数是资料分析\"凑整法\"所真正包括的主要内容。
技巧八:放缩法
\"放缩法\"是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果进行大胆的\"放\"(扩大)或者\"缩\"(缩小),从而迅速得到待比较数字大小关系的速算方式。
要点:
若A>B>0,且C>D>0,则有:
1) A+C>B+D
2) A-D>B-C
3) A×C>B×D
4) A/D>B/C
这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做题当中经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考场之上容易漏掉的数学关系,其本质可以用\"放缩法\"来解释。
技巧九:增长率相关速算法
李委明提示:计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解答资料分析题有着非常重要的辅助作用。
两年混合增长率公式:
如果第二期与第三期增长率分别为r1与r2,那么第三期相对于第一期的增长率为:
r1+r2+r1× r2
增长率化除为乘近似公式:
如果第二期的值为A,增长率为r,则第一期的值A′:
A′=A/1+r≈A×(1-r)
(实际上左式略大于右式,r越小,则误差越小,误差量级为r2)
平均增长率近似公式:
如果N年间的增长率分别为r1、r2、r3……rn,则平均增长率:
r≈r1+r2+r3+……rn/n
(实际上左式略小于右式,增长率越接近,误差越小)
技巧十:综合速算法
“综合速算法”包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速算方式,但这些速算方式仍然是提高计算速度的有效手段。
平方数速算:
牢记常用平方数,特别是11~30以内数的平方,可以很好地提高计算速度:
121、144、169、196、225、256、289、324、361、400
441、484、529、576、625、676、729、784、841、900
尾数法速算:
因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时候多强调首位估算,而尾数往往是微不足道的。因此资料分析当中的尾数法只适用于未经近似或者不需要近似的计算之中。历史数据证明,国考试题资料分析基本上不能用到尾数法,但在地方考题的资料分析当中,尾数法仍然可以有效地简化计算。
展开全部
您好,华图教育为您服务。
国考资料分析大纲内容:主要测查应试者对各种形式的文字、图形、表格等资料的综合理解与分析加工的能力,这部分内容通常由数据性、统计性的图表数字及文字材料构成。
对于单纯判断选项正确的综合分析题,我们在判断选项正误的时候,优先选择比较简单的选项,最后计算比较难的选项,一般选择的原则是:
(1)首先分析没有带数字的选项;
(2)其次分析当年、当期的选项;
(3)最后分析去年或者其他年份、时期的选项。
通常来说,4个选项,我们最多只需要判断出其中3个选项的正误,就可以得到试题的正确答案,所以当遇到比较麻烦的选项时,我们可以先跳过去不分析,看下面的选项是不是简单,能不能通过分析下面的选项来得到答案。
对于个数判断型的综合分析题,我们只能判断出每一个判断句的正误才能得到试题的正确答案,其信息量、计算量要比单纯判断选项正确的综合分析题要大,所以这类试题的难度要高,当我们实在是没有时间的时候,可以有选择的放弃这种类型的试题。
如有疑问,欢迎向华图教育企业知道提问。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-11-14 · 国内知名职业教育培训机构
中公教育
中公教育是大型的多品类职业教育机构。在全国拥有1859个直营网点,覆盖319个地级市。主营业务横跨招录考试培训、学历提升和职业能力培训3大板块,提供超过100个品类的综合职业就业培训服务。
向TA提问
关注
展开全部
重点掌握题干材料中的计算型概念和理解型概念,能够提高对材料的理解和对数据的敏感度。熟练掌握计算技巧,包括首数法、尾数法、特征数字法、分子分母比较法等。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
资料分析主要测查报考者对各种形式的文字、图表等资料的综合理解与分析加工能力,这部分内容通常由统计性的图表、数字及文字材料构成。
资料分析主要考察对信息的分析、比较、推测和计算。考生应注意以下四点:
一是分析历年行测真题,大致掌握资料分析模块的材料类别、常见出题方法、考点、题目难度等;
二是掌握读题的基本方法,学会快速提取有效信息;
三是熟悉真题中经常出现的一些统计术语,对某些常考数据有敏感度;
四是灵活应用估算技巧,不纠结于繁复数量的计算,提高计算效率。
资料分析主要考察对信息的分析、比较、推测和计算。考生应注意以下四点:
一是分析历年行测真题,大致掌握资料分析模块的材料类别、常见出题方法、考点、题目难度等;
二是掌握读题的基本方法,学会快速提取有效信息;
三是熟悉真题中经常出现的一些统计术语,对某些常考数据有敏感度;
四是灵活应用估算技巧,不纠结于繁复数量的计算,提高计算效率。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询