均质偏心圆盘动量矩怎么求
展开全部
均质偏心圆盘动量矩求法:圆盘绕过质心C垂直轴的转动惯量I'=mRR/2,由平行轴定理可知圆盘绕过O的垂直轴的转动惯量I=I'+mRR=3mRR/2,所以,动量矩J=Iω=3mRRω/2,转动动能E=Iωω/2=3mRRωω/4。
本来对转动的圆盘,讨论其动量是是不合适的,所以才引用了角动量(动量矩)这个概念。动量是平动的概念。如果是定轴转动,动量为0,动量矩是转动的概念,不为0,与质量/转速/半径有关。
动力学普遍定理之一
它给出质点系的动量矩与质点系受机械作用的冲量矩之间的关系。动量矩定理有微分形式和积分形式两种。
描述物体转动状态的量,又称角动量。一个质量为m、速度为v、矢径为r的质点对r的原点的动量矩为L=r×mv。动量矩是个矢量,它在某一轴上的投影就是对该轴的动量矩。对轴的动量矩是个标量。质点系或刚体对某点(或某轴)的动量矩等于其中所有质点的动量对该点(或该轴)之矩的矢量和(或代数和)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询